
Robust Bipedal Locomotion
over Rough Terrain by
extending ZMP-based Control
Robuste zweibeinige Fortbewegung über unebene Gelände durch Erweiterungen
ZMP-basierter Regelungskonzepten
Master-Thesis von Anaïs Reynaud (Studiengang Elektrotechnik und Informationstechnik)
Tag der Einreichung:

1. Gutachten: Prof. Dr. Oskar Von Stryk, Fachgebiet Simulation, Systemoptimierung und Robotik
2. Gutachten: Prof. Dr.-Ing. Ulrich Konigorski, Fachgebiet Regelungstechnik und Mechatronik

Robust Bipedal Locomotion over Rough Terrain by extending ZMP-based Control
Robuste zweibeinige Fortbewegung über unebene Gelände durch Erweiterungen ZMP-basierter
Regelungskonzepten

Vorgelegte Master-Thesis von Anaïs Reynaud (Studiengang Elektrotechnik und Informationstechnik)

1. Gutachten: Prof. Dr. Oskar Von Stryk, Fachgebiet Simulation, Systemoptimierung und Robotik
2. Gutachten: Prof. Dr.-Ing. Ulrich Konigorski, Fachgebiet Regelungstechnik und Mechatronik

Tag der Einreichung:

Erklärung zur Abschlussarbeit gemäß § 22 Abs. 7 und § 23 Abs. 7 APB TU Darmstadt

Hiermit versichere ich, Anaïs Reynaud, die vorliegende Master-Thesis / Bachelor-Thesis gemäß § 22 Abs.
7 APB der TU Darmstadt ohne Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln
angefertigt zu haben. Alle Stellen, die Quellen entnommen wurden, sind als solche kenntlich gemacht
worden. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen. Mir
ist bekannt, dass im Falle eines Plagiats (§38 Abs.2 APB) ein Täuschungsversuch vorliegt, der dazu führt,
dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht wird. Abschlussarbeiten
dürfen nur einmal wiederholt werden. Bei der abgegebenen Thesis stimmen die schriftliche und die zur
Archivierung eingereichte elektronische Fassung gemäß § 23 Abs. 7 APB überein.

English translation for information purposes only:
Thesis Statement pursuant to § 22 paragraph 7 and § 23 paragraph 7 of APB TU Darmstadt I herewith
formally declare that I, Anaïs Reynaud, have written the submitted thesis independently pursuant to §
22 paragraph 7 of APB TU Darmstadt. I did not use any outside support except for the quoted literature
and other sources mentioned in the paper. I clearly marked and separately listed all of the literature
and all of the other sources which I employed when producing this academic work, either literally or
in content. This thesis has not been handed in or published before in the same or similar form. I am
aware, that in case of an attempt at deception based on plagiarism (§38 Abs. 2 APB), the thesis would
be graded with 5,0 and counted as one failed examination attempt. The thesis may only be repeated
once. In the submitted thesis the written copies and the electronic version for archiving are pursuant to
§ 23 paragraph 7 of APB identical in content.

Datum/Date: Unterschrift/Signature:

I

Abstract

Humanoid robotics is a very active and recent research field, that aims at developing robots which are
suitable to interact with an environment designed for humans. One of the biggest challenges is the
generation and control of a stable dynamic biped locomotion on any terrain. In order to ensure the
dynamic stability, the Zero-Moment Point (ZMP) criterion has been widely used. Based on it, the ZMP-
Preview Control proposed by Kajita et al. has become the most used walking approach for bipedal robots.
Although the basic method focuses on generating a stable horizontal motion for walking on flat ground,
various extensions have then been proposed for uneven terrain scenarios which are discussed in this
work.
A basic ZMP-Preview Control limited to walking on flat ground is already implemented on the humanoid
robot “Johnny #5”, which is used as experimental platform in this work. Hence, this thesis investigates
how to extend this existing software to enable walking motions on uneven terrain. The application of
a unique method using Virtual Slopes shows first promising results and was successfully tested in simu-
lation on uneven terrain such as stairs. On the real robot, a robust ZMP Balance Control is additionally
required. For this reason, the already existing approach was re-designed by combining state of the art
balance controllers. In order to evaluate and tune the controller performance, visualization tools are
provided by the newly implemented software stack as well.

Keywords: humanoid robot, biped locomotion, zero-moment point, preview control, virtual slope, bal-
ance control.

Zusammenfassung

Humanoide Robotik ist ein sehr aktives und aktuelles Forschungsgebiet, das darauf abzielt, Roboter zu
entwickeln, die mit einer für Menschen gedachten Umgebung interagieren können. Eine der größten
Herausforderungen ist die Steuerung und Regelung einer stabilen dynamischen, zweibeinigen Fortbe-
wegung auf beliebigem Gelände. Um die dynamische Stabilität zu gewährleisten, ist das Zero-Moment
Point (ZMP) Kriterium weit verbreitet. Basierend darauf hat sich die von Kajita vorgeschlagene ZMP-
Preview Control Methode zum meistgenutzten Ansatz für zweibeinige Roboter entwickelt. Obwohl sich
die Grundmethode auf die Erzeugung einer stabilen horizontalen Bewegung für das Gehen auf flachem
Boden konzentriert, wurden verschiedene Erweiterungen für unebene Geländeszenarien vorgeschlagen,
die in dieser Arbeit diskutiert werden.
Ein einfaches ZMP-Preview Control, das sich auf das Gehen auf flachem Boden beschränkt, ist bereits auf
dem humanoiden Roboter “Johnny #5” implementiert, der in dieser Arbeit als experimentelle Plattform
dient. Deshalb wird in dieser Thesis untersucht, wie die bestehende Software erweitert werden kann, um
eine Gehbewegung auf unebenem Gelände zu ermöglichen. Die Anwendung einer einzigartigen Meth-
ode mit virtuellen Steigungen zeigt erste vielversprechende Ergebnisse und wurde erfolgreich in der
Simulation auf unebenem Gelände wie Treppen getestet. Am realen Roboter ist zusätzlich eine robuste
ZMP Balance Regelung erforderlich. Aus diesem Grund wurde die bereits bestehende Implementierung
durch die Kombination modernster Bilanzregler neu konzipiert. Um die Leistung der Regelung zu bew-
erten und einzustellen, werden auch Visualisierungstools durch den neu implementierten Software-Stack
bereitgestellt.

III

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 THORMANG3 . 2

1.2.1 Hardware Description . 2
1.2.2 Existing Software . 4

1.3 Thesis Outline . 4

2 State of the Art of ZMP-based Control Concepts 5
2.1 Fundamental Definitions for Bipedal Locomotion using the ZMP 5
2.2 ZMP-Preview Control . 7
2.3 Extensions of the ZMP-Preview Control for Uneven Terrain . 12

2.3.1 Adapting the ZMP-Preview Control Method to Uneven Terrain 12
2.3.2 Improving the Robustness of the ZMP-Preview Control Method 14

2.4 Related Work on the Balance Control . 14

3 Design of the Gait Pattern Generator 17
3.1 Center of Body . 17
3.2 Initial Pose . 17
3.3 Reference Frames . 18
3.4 Swing Foot Trajectory Generator . 19

3.4.1 Robotis’ Swing Foot Trajectory . 20
3.4.2 Improved Swing Foot Trajectory . 23

3.5 Center of Body Trajectory Generator . 29
3.5.1 Robotis’ Vertical Trajectory of the Center of Body . 29
3.5.2 New Vertical Motion of the Center of Body using Virtual Slopes 29
3.5.3 Trajectories of the Center of Body Orientation . 30

4 Design of the Balance Control 31
4.1 Robotis’ Balance Control of the Feet . 31

4.1.1 Low-Pass Filters . 31
4.1.2 Robotis’ IMU Control . 32
4.1.3 Robotis’ Force/Torque Control . 33
4.1.4 Robotis’ Controllers Summary . 34
4.1.5 Limits . 34

4.2 Improved Balance Control of the Feet and Center of Mass . 35
4.2.1 Balance Control Phases and Landing Detector . 35
4.2.2 New IMU Control . 36
4.2.3 New Force/Torque Control . 38
4.2.4 New Feet Controllers Summary . 39
4.2.5 Estimation of the Real/Virtual ZMP . 39
4.2.6 ZMP Control . 42

4.3 Safety Features . 42
4.3.1 Saturation of the Balance Control Correction . 42
4.3.2 Fall Detection . 43
4.3.3 Detection of Communication Break Down . 43

5 Implementation 45
5.1 Robotis’ Code Structure . 45

V

5.2 New Implementation . 45
5.3 Visualization Tool . 46

6 Tuning and Functional Testing 47
6.1 Open Loop Tests in Simulation . 47
6.2 Testing Former Code Performances . 49

6.2.1 Center of Body Swap Motion . 49
6.2.2 Fx/Fy Controllers . 50

6.3 Tuning and Testing of the New Gait Pattern Generator . 51
6.3.1 Calibration of the Legs . 51
6.3.2 Centering of the Center of Mass above the Feet . 52
6.3.3 Estimation of the Height of the Center of Mass . 53

6.4 Tuning and Testing of the New Balance Control . 57
6.4.1 Calibration of the F/T Sensors . 57
6.4.2 Testing the Estimation of the ZMP Position . 59
6.4.3 Tuning the Gains of the Controllers . 62

7 Evaluation 65
7.1 Before Walking . 65
7.2 Default Walking Gait on Flat Ground . 65
7.3 Big Steps . 66
7.4 Stairs . 66

8 Conclusion 71
8.1 Achievements . 71
8.2 Outlook . 71

A Torque Control using Drake (MIT) 73

B Mathematical Proofs of Monotonic Trajectories 75

C Pseudo-Code 80

D Computation of the Estimated ZMP 81

E Software Parameters 84

F Walking Experiments 88

Acronyms 91

List of Figures 92

List of Tables 94

Bibliography 95

VI

1 Introduction

The Kobe earthquake in 1995, one of the worst in Japan’s history in terms of victims and damage, has

been the trigger for the development of rescue robotics [1]. The difficulty and inefficiency of the disaster

response back then pushed roboticists to design new systems to support the rescue teams when the

environment is too hazardous for humans. Sixteen years later the nuclear catastrophe of Fukushima

once again urged roboticists to redouble their efforts to build robust and performing rescue robots.

In order to promote the research in this field numerous competitions have been organized after

these incidents. In 2001 the yearly competition RoboCup, which was originally composed of robot

soccer leagues only, was supplemented with a rescue league for mobile robots. The Defense Advanced

Research Projects Agency (DARPA) organized a competition named the DARPA Robotics Challenge (DRC)

in several phases between 2013 and 2015 for humanoid rescue robots. Capabilities of rescue robots that

are tested in such competitions are for instance:

• cartography and inspection of the damaged environment

• victims localization

• communication with victims through robot microphone and speaker

• clearing the way (move obstructions)

• cleanup (for instance removal of radioactive element)

The robots are either fully autonomous or remote-controlled by an operator from a safe distance or the

robots are even capable of doing tasks autonomously.

Rescue robots can take different shapes depending on the task they are meant for and can be com-

bined in disaster response. The SIM lab1 of the TU Darmstadt2 participates to such competitions with

three kinds of robots: mobile robots with tracks, drones and humanoid robots. The third type is of

interest in this thesis.

1.1 Motivation

Designing human-like robots permits them to better interact with an environment that was built for

humans. They are for instance more suitable to open doors than drones or to climb up stairs than

mobile robots. On the other hand one of the biggest challenges in humanoid robotics is undoubtedly

the robustness of the legged locomotion. Such platforms are generally much more complex to control

than mobile robots or drones because of their natural instability, the large number of actuators and the

high height of the Center of Mass (CoM). Moreover in a catastrophic scenario humanoid robots should

be capable of traversing difficult terrain such as uneven damaged floors with debris, introducing more

challenges for legged locomotion control.

The SIM lab disposes of a humanoid robot of the company Robotis, which is shown in Figure 1.1

and described more in detail in Section 1.2. Before the beginning of this thesis it could only walk on

a perfectly even floor. Hence, the focus of this thesis is to improve the locomotion such that the robot

1 Lab of the Institut for Simulation, Optimization and Robotics
2 Technical University of Darmstadt

1

is capable of walking up and down stairs and slopes (during straight forward motion). These are the

first types of terrain that should be mastered before trying on even more complex terrain. In order to

achieve this goal the generation of a whole-body motion taking pre-planned footsteps into account and

its feedback control will be studied here. The planning of the desired footsteps based on the perception

of the environment is not part of this thesis.

(a) Real robot (b) Simulation (Gazebo)

Figure 1.1: Johnny #5, the humanoid robot of the SIM lab

1.2 THORMANG3

THORMANG3 is a humanoid robot platform designed and sold by the South Korean company Robotis,

whereby THOR is the acronym for Tactical Hazardous Operations Robot [2]. The SIM lab possesses

the third version of this platform, which was named Johnny #5. The initial state of the hardware and

software before the start of this thesis is described in Section 1.2.1 and Section 1.2.2 respectively.

In the rest of this thesis the term THORMANG3 will be used for referring to the robot platform in

general and the name Johnny #5 when especially considering the robot of the SIM lab with all individual

changes that were made.

1.2.1 Hardware Description

Johnny #5 has 33 active Degrees of Freedom (DoFs). For the locomotion only the actuators of the

legs will be considered (12 DoFs). The 1-DoF hands of Robotis were replaced by 2-DoFs hands from

Virginia Tech University for better manipulation [3]. The actuators are Dynamixel Pro servomotors with

integrated encoders and position control.

The SIM lab placed two PCs on the sides of the robot (one dedicated for motion tasks and one for

perception tasks) and a router on its back for wireless communication. This way an operator can send

commands to the robot and receive feedback information from the computers of the latter.

An overview of the used sensors is illustrated in Figure 1.2. The Force/Torque (F/T) sensors in the

wrists are used for manipulation tasks, while the F/T sensors in the ankles and the Inertial Measurement

Unit (IMU) enable to control the locomotion of the robot. Moreover, a camera and a rotating scanning

laser have been added in order to capture data about the environment for the perception software. All

the hardware components are listed in Table 1.1.

2

Table 1.1: Specifications of Johnny #5 [4]

Weight 48.5 kg

Height 1.53 m

Active DoF Head: 2 DoFs

Arm: 7 DoFs (x2)

Hand: 2 DoFs (x2)

Waist: 1 DoF

Leg including hip: 6 DoFs (x2)

Controllers (PCs) Quanmax KEEX-8100 with Intel® Core™ i7-4800MQ

processor (x2)

Sensors Camera: Intel® RealSense™ R200

Scanning Laser: Hokuyo UTM-30LX-EW

F/T Sensors Wrists: ATI Mini45 SI-290-10 (x2)

F/T Sensors Ankles: ATI Mini 58 SI-1400-60 (x2)

IMU: Microstrain 3DM-GX3-45

Actuators DYNAMIXEL PRO H-Series

Batteries LiPo 11000 mA 6S 22.2 V (x2)

camera

router

scanning
laser

perception PC

motion PC

batteries

IMU

F/T
sensor

F/T
sensor

ankle roll

ankle
pitch

knee
pitch

hip
pitch

hip roll

hip yaw

Figure 1.2: Hardware of Johnny #5

3

1.2.2 Existing Software

The software of Johnny #5 runs on Ubuntu 16.04 system with ROS (Robot Operating System)1. The

robot is simulated in Gazebo and its perception of the environment can be visualized using RViz2. The

software is developed by the SIM lab and parts of it are provided by Robotis, especially the code for the

robot to walk on flat ground, however without any detailed information on how it works. Although this

code takes as input a plan of 3D footsteps, the robot could not walk on uneven terrain.

The original goal of the thesis of Reimold [5] was to use the locomotion tools of the library “Drake”

(instead of Robotis code) in order to improve the walking of Johnny #5. This library is developed by

the Computer Science and Artificial Intelligence Lab (CSAIL) of the MIT3 and tested by them on Atlas,

the humanoid robot platform by Boston Dynamics. Not only the unsuccessful results on Johnny #5 back

then but also other reasons described in Appendix A led to the decision not to continue in this direction.

This is mainly because Atlas is torque-controlled, while THORMANG3 is position-controlled at joint level.

Reimold then used Missura’s Capture Step Framework [6] instead of Drake. Since it was developed for

robots walking on flat soccer fields, Johnny #5 could still not walk on uneven ground.

After ruling out these two approaches the first stage of this thesis was investigating how Robo-

tis code works and searching for state of the art methods for robust locomotion of position-controlled

robots. It turned out that Robotis implemented the well spread method of ZMP4-Preview Control which

is described in Section 2.2. Plenty of papers were written on extensions of this method for locomotion

on uneven terrain. For these reasons this thesis focuses on improving the code written by Robotis.

1.3 Thesis Outline

Fundamentals of bipedal walking are explained in Section 2 along with state of the art walking methods

based on ZMP control. Section 3 and Section 4 respectively present the two main parts of the walking

software:

• the Gait Pattern Generator (GPG) which generates stable desired trajectories (feedforward)

• the Balance Control (BC) whose aim is to make the robot follow these trajectories to keep balance

(feedback control)

As a parallel project the complete walking software is reimplemented as a library to improve code read-

ability, ease further developments and enable the use on other robots. This new structure is described

in Section 5. After developing the software its parameters have to be tuned for the considered robot

(Johnny #5) as explained in Section 6. Section 7 presents the results of this thesis through walking ex-

periments and finally Section 8 concludes with a sum up of the achievements and suggestions for further

improvements.

1 http://wiki.ros.org.
2 http://wiki.ros.org/rviz
3 Massachusetts Institute of Technology
4 Zero-Moment Point (cf. Section 2.1 for a definition)

4

http://wiki.ros.org
http://wiki.ros.org/rviz

2 State of the Art of ZMP-based Control Concepts

In order to enable a robot to walk, reference trajectories are generated and then control theory is used

to make the robot follow these trajectories [7]. The main goal by the generation and tracking of these

trajectories is the stability of the gait.

In a torque-controlled robot the torque commands for the actuators of the joints can be optimized

based on planned footsteps and a whole-body model, which can be expressed as the matrix equation

M(q) · q̈ +C(q̇ ,q) = STτ+ J(q)Tλ (2.1)

where vector q contains the positions of the robot base and of the joints, τ the efforts in the joints and

λ the contact forces. M is the mass matrix, C the matrix of the Coriolis and gravitational terms, S the

joint selection matrix and J the contact Jacobian [8, 9].

On the other hand for a position-controlled robot a simplified model is usually used, which does

not consider the torques in the joints, since they cannot be directly controlled. Often, the model gener-

ates trajectories of the CoM and the feet, which are then converted into joint trajectories using Inverse

Kinematics (IK). In order to generate these trajectories a dynamic stability criterion is required, whereby

the Zero-Moment Point (ZMP) is commonly used. This criterion is presented in Section 2.1 in detail.

Many methods have been investigated, however Section 2.2 focuses on the well spread method of Kajita

et al. [10]: the ZMP Preview Control (ZMP-PC) which is based on the well-known Linear Inverted Pendu-

lum Model (LIPM). This method was already implemented by Robotis for THORMANG3, however some

improvements are required to enable the robot to walk on a complex terrain. Section 2.3 and Section 2.4

present state-of-the-art extensions (at the GPG and the BC level, respectively) to improve the robustness

of the locomotion on uneven terrain with or without prior knowledge about it. In our case the terrain is

known thanks to the sensors of the head, but not perfectly (an error in the centimeter range is assumed),

so methods without this knowledge can be a great reference to deal with such discrepancies and improve

the robustness of the walking.

2.1 Fundamental Definitions for Bipedal Locomotion using the ZMP

Commonly, a frame is placed at a fixed position in the humanoid robot upper body with the x axis

pointing forwards and the z axis upwards. The locomotion is then described in the three following

planes of the 3D space [11]:

• the frontal plane, corresponding to the y-z plane

• the sagittal plane, corresponding to the x-z plane

• the transverse plane, corresponding to the x-y plane

which can be seen in Figure 2.2 and Figure 2.3. During a walking gait the robot alternates between

Single-Support Phases (SSPs) where only one foot is touching the ground and Double-Support Phases

(DSPs) where both feet are on the ground [12]. The enclosing convexe region of the contact points

between the feet and the terrain is named the support polygon and is illustrated in Figure 2.2.

5

As mentioned above and illustrated in Figure 2.1, walking control algorithms are classically imple-

mented in two blocks:

• a Gait Pattern Generator (GPG) that generates ideal reference trajectories

• a Balance Control (BC) that makes the robot keep its balance and follow these trajectories.

The first block takes different but similar names in the literature. Here, the same name as in [13] is used.

Figure 2.1: Classical structure of walking algorithms

The input of the GPG is a queue of the steps represented by parameters such as foot positions, step

duration and upper body motion. Its outputs are generated trajectories of the feet, the ZMP and the

upper body. The BC modifies these trajectories according to the feedback of the sensors. In some papers

like [14, 15] the BC also gives feedback about the actual state of the robot to the GPG to improve the

trajectories for longterm stability, while the BC deals with instant stability [7].

When the robot is standing, a good stability criterion is the projection of the Center of Mass (CoM) on

the ground. If it is situated inside the support polygon, the robot is in a stable standing pose. Otherwise,

the robot is falling over. This criterion can however not be used when the robot is walking, since the

CoM can be located outside the support polygon during a stable walk.

Therefore in practice, the ZMP is used as dynamic stability criterion [16]. Considering the stance

foot during a SSP, the total horizontal forces of the ground reaction as well as the vertical moment are

compensated by the friction. The horizontal moments can only be compensated by the position of the

total reaction force inside the support polygon, i.e. by the position of the Center of Pressure (CoP). If

they cannot be compensated, the CoP reaches one edge of the support polygon, the horizontal torques

are not zero any more at the CoP and the robot tips over. Thus, a necessary and sufficient criterion for

the robot to keep balance, is that the horizontal moments at the CoP are null (cf. detailed proof in [16]).

This point is named the Zero-Moment Point (ZMP). When the robot is standing still, this criterion is

equivalent to the projected CoM, since it corresponds to the CoP. The goal of the BC is then to keep the

ZMP inside the support polygon within safety margins to its edges.

x

y

+

+

+

+

+ZMP

CoM

support polygon (SSP)

support polygon (DSP)

Figure 2.2: Example of a standard footstep plan with desired CoM and ZMP trajectories in the transverse
plane

6

In the GPG, a reference trajectory of the CoM is derived from a reference trajectory of the ZMP. In

Figure 2.2 a typical trajectory of the CoM of a humanoid robot during a walking gait is illustrated in the

transverse plane. In this example, the ZMP reference is situated at the middle of the desired foot position

with a maximal margin to the edges of the support polygon. In order to generate the CoM trajectory, a

commonly used model is the Linear Inverted Pendulum Model (LIPM). The two ends of the pendulum

corresponds to the ZMP and the CoM as illustrated in Figure 2.3. Based on this model, Kajita et al. [10]

proposed the method of ZMP Preview Control (ZMP-PC) which is explained in the next section. It can

be categorized into a more general concept called Model Predictive Control (MPC) [7].

CoM

ZMP

(a) Sagittal plane

ZMP

CoM

(b) Frontal plane

Figure 2.3: 3D-Linear Inverted Pendulum Model (LIPM) [image credits Reimold [5]]

2.2 ZMP-Preview Control

The ZMP Preview Control (ZMP-PC) method was first proposed by Kajita et al. [10]. It is based on the

equations of the Linear Inverted Pendulum Model (LIPM) which describe the CoM and ZMP relative

motion in the transverse plane:
(

px = x − z−pz
z̈+g · ẍ

py = y − z−pz
z̈+g · ÿ

(2.2)

7

where (px , py , pz) are the coordinates of the ZMP, (x , y, z) the coordinates of the CoM and g the gravity

acceleration. Assuming the terrain is horizontal and flat and the CoM is moving at a constant height H

above the ground (pz = 0 and z = H), these equations become linear:

(

px = x − H
g · ẍ

py = y − H
g · ÿ

(2.3)

These linear equations are equivalent to a cart-table model in each (decoupled) direction as illustrated

in Figure 2.4. Indeed, the equation in x direction of this model is

τzmp = mg(x − px)−mẍH = 0, (2.4)

where τzmp is the torque at the ZMP in the y direction. This leads to the first equation of the system

(2.3). The same equation applies in the y direction. Thus, only the equations in the x direction will be

considered in the rest of this section. From equations (2.3), the state equations of the cart-table model

can be derived as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d
d t

⎡

⎢

⎢

⎣

x

ẋ

ẍ

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 1 0

0 0 1

0 0 0

⎤

⎥

⎥

⎦

·

⎡

⎢

⎢

⎣

x

ẋ

ẍ

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

0

0

1

⎤

⎥

⎥

⎦

· ux

px =
�

1 0 −H
g

�

·

⎡

⎢

⎢

⎣

x

ẋ

ẍ

⎤

⎥

⎥

⎦

(2.5)

For a numerical implementation the system has to be discretized with a sample period Ts. Thus, the

equations become
(

xk+1 = A · x k + B · ux ,k

px ,k+1 = C · x k

(2.6)

with

xk =

⎡

⎢

⎣

x(kTs)
ẋ(kTs)
ẍ(kTs)

⎤

⎥

⎦
, uk = ux(kTs), px ,k = px(kTs),

A=

⎡

⎢

⎣

1 Ts
T2

s
2

0 1 Ts

0 0 1

⎤

⎥

⎦
, B =

⎡

⎢

⎣

T3
s
6

T2
s
2

Ts

⎤

⎥

⎦
and C =
�

1 0 −H
g

�

. (2.7)

8

x

z

ẍ

px
x

H

m

τzmp=0

Figure 2.4: The cart-table model in 2D

In this system of equations the ZMP position is the output and the CoM state is the state vector.

However, in the GPG the reference trajectory of the ZMP is determined by the desired feet positions from

the Footstep Planner and a CoM trajectory is meant to be generated from this ZMP reference. Therefore,

Kajita et al. [10] proposed to add a ZMP Tracking Control: A CoM position is generated by controlling the

error between the ZMP reference and the ZMP position generated by the state equations. The controller

was designed based on the following observation: When taking a step, the CoM is supposed to move

forwards before the swinging foot touches the ground, i.e. before the next desired ZMP position is

reached (cf. Figure 2.7). Therefore, the controller should take the future ZMP reference positions into

account. This method was named ZMP Preview Control (ZMP-PC) because of this particularity and is

illustrated in Figure 2.5. It allows the CoM to have a smooth trajectory between the feet even if the ZMP

reference is discontinuous.

Optimized
Preview

Controller

Cart Table
Model

pxx

pfuture
x

px
ref

ux
x

+

-

Figure 2.5: Block scheme of the ZMP Preview Control

The input ux of the cart-table model is determined using a linear quadratic optimization with the

performance index

J =
∞
∑

i=k

Qee
2
x ,i +∆x i

T Qx∆x i + R∆u2
x ,i (2.8)

9

where

ex ,i = px ,i − pre f
x ,i (2.9)

∆x i = x i − x i−1 (2.10)

∆ux ,i = ux ,i − ux ,i−1 (2.11)

The optimal input minimizing this performance index is

ux ,k = −Gi

k
∑

j=0

ex , j

  

integral action
on tracking error

−Gx xk

  

state feedback

−
N
∑

j=1

Gp(j)p
re f
x ,k+ j

  

preview action

(2.12)

The gains Gi, Gx and Gp(j) are derived from the parameters Qe, Qx , R and H. The equations to calculate

these gains can be found in [17] and are based on the discrete-time algebraic Ricatti equation (DARE).

Tprev iew = N Ts is the preview horizon during which the ZMP reference has to be known. The preview

horizon is set to 1.6 s since for a bigger time, the preview gain Gp is negligible as shown in Figure 2.6

[10].

In Figure 2.7 the CoM generated by the ZMP-PC with the same gains as in Figure 2.6 is illustrated,

including the ZMP position (px , py) generated by the cart model. The ZMP reference is fixed at the

middle of the planned footsteps and the objective is fulfilled since the error between the generated ZMP

and the ZMP reference remains very low.

Figure 2.6: Gain Gp of the preview action for H = 0.5 m, Ts = 8 ms, Tprev iew = N T = 1.6 s, Qe = 1,
Qx = 0 and R= 1 · 10−6

Wieber [18] showed that this simple model leads to very good results: The generated trajectory

leads to a stable walk and the error on the generated ZMP position compared to a whole-body model is

10

less than 2 cm. Moreover, this imprecision can be easily overcome by having safety margins of at least

2 cm inside the support polygon for the control of the ZMP.

Although other ZMP based methods exist (for instance analytical methods), the choice was made

to use the ZMP-PC in this thesis because it is widely used and a lot of papers has been published on the

subject, proposing extensions for improved robustness (cf. Section 2.3 and Section 2.4). Moreover, this

method has already been implemented by Robotis for THORMANG3 and has already shown good results

on flat ground. Another advantage of this method is that any gait is possible (i.e. the desired footsteps

can be freely chosen) in contrary to methods which only allow periodic fixed gait patterns.

However, some drawbacks are that this method works on flat ground only and that it is not possible

to change the ZMP reference trajectory during the preview horizon of 1.6 s [11]. These restrictions

can be overcome using extensions that are presented in the next section. The removal of the second

restriction can be really useful since it for instance makes it possible to overcome stronger perturbations

by quickly change a desired footstep position according to the sensory feedback.

Figure 2.7: Trajectories of ZMP and CoM generated by ZMP Preview Control taking a ZMP reference
trajectory as input

11

2.3 Extensions of the ZMP-Preview Control for Uneven Terrain

In the paper of Kajita et al. [10] presenting the ZMP Preview Control (ZMP-PC), the assumption was

made that the ground is horizontal and that the CoM is moving in a parallel plane. However, the authors

also tested the algorithm on stairs in the simulation but did not explain how they adapted it. Later, some

researchers have proposed extensions of the method of ZMP-PC to explicitly consider the unevenness

of the terrain (cf. Section 2.3.1). Moreover, some work has been made to improve the precision and

robustness of the model (cf. Section 2.3.2).

2.3.1 Adapting the ZMP-Preview Control Method to Uneven Terrain

Virtual Slope method
Sato et al. [19] pointed out that the LIPM is confronted to what they named a ZMP equation problem.

Indeed, the equations (2.2) are generally not linear on uneven terrain. However on a slope, if the CoM

is moving in a plane parallel to the slope (pz = k · px and z = k · x + H where k is the slope coefficient),

the same linear equations (2.3) as on flat ground are obtained. On the other hand, on stairs with the

CoM moving in a plane (pz = 0 and z = k · x +H) the equations remains non linear:

(

px
kẍ+g

g = x − H
g · ẍ

py = y − H
g · ÿ

(2.13)

Moreover during a DSP on stairs, the ZMP is not defined because the two feet do not lay on the same

plane. The authors named it the ZMP definition problem. These two problems can be overcome by using

the proposed method of Virtual Slope (VS).

Virtual
Slope

H

Figure 2.8: Virtual Slope method of Sato et al. [19] on stairs

As illustrated in Figure 2.8 the stairs are replaced by a VS which can be freely chosen but has to

stay near the stairs. If the CoM moves in a plane parallel to it, the same linear equations as on a slope

(i.e. as on flat ground) can be applied (equations (2.3)). For this VS, a virtual ZMP and a virtual

support polygon are defined. In order to construct the latter, a line is drawn between each vertex of

the real support polygon and the CoM. The boundaries of the virtual support polygon are made of the

intersections of these lines and the virtual slope. The virtual ZMP is situated at the intersection between

the virtual slope and the Zero-Moment Line (ZML). The latter is the line on which the total reaction

12

moment is zero and is described more in detail in Section 4.2.5. Although the authors did not use

ZMP-PC but an analytical polynomial solution, their VS method could be used in combination to ZMP-PC

since it is based on the same equations of the LIPM.

Extended ZMP Method

Instead of looking for a method to enable the use of the linear equations (2.3) of the cart-table

model for any uneven terrain, Sun et al. [20] proposed an extended cart-table model for solving the ZMP

equation problem and an Extended Zero-Moment Point (EZMP) for solving the ZMP definition problem.

In this extended model a vertical motion of the CoM is enabled by adding a third preview controller in

the z direction based on the EZMP instead of the ZMP. The EZMP is the point of the Virtual Contact

Plane (VCP) where the ground reaction moment is orthogonal to the VCP. The VCP is defined as the

plane passing through the two feet positions in the actual DSP and the position of the next planned

footstep.

For equations (2.2) of the LIPM to be linear the fraction before the CoM acceleration has to be

constant:
z − pz

z̈ + g
= c (2.14)

This leads to the following linear system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

px = x − c ẍ

py = y − c ÿ

paux
z = pz + cg = z − cz̈

(2.15)

where paux = (px , py , paux
z)T is called auxiliary EZMP and c is a parameter that is set to an arbitrary

constant. Based on these equations, the authors implemented a “triple preview control”. The desired

EZMP is fixed in the middle of the stance foot during SSP and interpolated linearly during DSP. The

virtual support polygon is simply defined as the orthogonal projection of the real support polygon on the

VCP.

Other Similar Methods

Shimmyo et al. [21, 22] used the method of the VS of Sato et al. on flat ground to enable a vertical

motion of the CoM to obtain a more natural gait. They constructed a virtual plane with a sinusoidal

profile in the sagittal plane and made the CoM moves parallel to this plane (i.e. at a constant height

about it). The ZMP-PC is computed based on the virtual ZMP on this virtual plane.

Huang et al. [23] also proved that the equations of the LIPM are linear on a slope when the CoM

is parallel to it by considering the LIPM equations in the frame of the slope. Unlike most of the papers

which do not mention it at all, they especially considered the transition between the flat ground and

the slope during the DSP and explained how to set the parameters to have a continuous transition. One

disadvantage of their method is that they considered a fixed step distance for the whole gait. Moreover,

the height H of the CoM above the slope cannot be freely chosen.

13

2.3.2 Improving the Robustness of the ZMP-Preview Control Method

Reducing the Modeling Errors
Some authors like Nishiwaki et al. [24] or Shimmyo et al. [25] decided to compute the ZMP-PC

twice to reduce the errors due to the approximation of the LIPM. The first ZMP-PC is used to compute

the CoM trajectory, the second one to compute an additional CoM compensation term taking a ZMP error

as input. This error corresponds to the difference between the desired ZMP and the ZMP calculated using

the Multi-Mass Model of the robot, whose input is the CoM trajectory calculated by the first ZMP-PC. A

disadvantage of this method is that the preview horizon is twice as long. This means that the period

during which the trajectory of the reference ZMP cannot be changed is twice as long as for the classical

method of ZMP-PC.

Alternatively, some authors proposed to use a Three-Mass Model (instead of the LIPM) to reduce the

ZMP error [13, 25]. The three masses correspond to the upper body and the two legs. As a drawback,

since their heights are supposed constant, the swinging foot should not be raised too high during the

gait.

Taking the Estimated Actual State of the Center of Mass into Account
In order to improve the robustness of the walking, some authors proposed to adapt the ZMP-PC such

that the estimated actual state of the CoM is considered in the generation of desired CoM trajectory (as

feedback correction [14] or initial condition [15]). In the quoted papers they achieved a stable walking

under strong pushes on the side or on unknown slopes, respectively.

Other MPC Methods
Some authors proposed other MPC methods based on the same equations as the ZMP-PC to improve

the performances of the generated trajectories. For instance, Wieber [14] pointed out that the limits of

the support polygon are not taken into account in the ZMP-PC method. Hence, he proposed a Quadratic

Program based on the same equations but with additional inequality constraints on the position of the

ZMP. This leads the desired ZMP to have no fix position inside the sole.

2.4 Related Work on the Balance Control

In this section state-of-the-art control loops are presented that deal with making a position controlled

humanoid robot keep its balance when walking.

Upper Body and Feet Orientation Control
In order to keep the upper body of the robot vertical, classical controllers are generally implemented

(such as PD [26] or PI [27] controllers) which take the inclination of the upper body measured by an

IMU as input and return an angle correction for specific joints that have an influence on this inclination

(for instance the hip roll/pitch joints [26] or the ankle roll/pitch joints [27]).

In order to adapt the foot orientation to an uneven terrain, an adaptation control is often imple-

mented, which takes the torques measured in the feet into account to compute an orientation correction

(for instance as a low pass filter [27] or as a damping controller [28]).

14

Landing Control
The aim of a landing control is to reduce the impact of the swinging foot on the ground and maintain

the contact with the ground after the landing. The input is the vertical force error and the output a

correction of the foot height. In the literature different kind of controllers can be found: P controllers

[26], damping controllers [15, 28] or controllers based on a mass-spring-damper system [19, 25, 27].

ZMP Control
Different methods have been proposed to control the position of the real ZMP while the robot is

walking. The error between the ZMP reference and the estimated position of the real ZMP is used to

compute a correction of the horizontal position [26, 27] or velocity [24] or acceleration [20] of the CoM

using the same different kinds of controllers as for landing control.

Changing the ZMP Reference inside the Foot Sole
Instead of correcting the CoM state using a ZMP controller, other authors proposed to adapt the

ZMP reference trajectory. In the original ZMP-PC method it is not possible to change the ZMP reference

during preview horizon. In order to overcome this disadvantage, Kajita et al. [29] developed the concept

of “auxiliary ZMP” which corresponds to the difference between the new desired ZMP and the planned

ZMP reference. The input of the cart-table model is the sum of the output of the ZMP-PC controller

based on the ZMP reference and of a correction term based on the auxiliary ZMP. The authors give an

example of auxiliary ZMP which is composed of a PD controller on the upper body inclination and a P

controller on the real ZMP error. This new method can deal with external forces or uneven terrain. This

concept was taken over and extended by Nishiwaki et al. [30, 31]. Their robot was able to walk up on

an unknown slope.

Modification of the Planned Footsteps
When dealing with very strong perturbations, the only solution to keep balance is to change the

position of the next planned footsteps [11]. These new footsteps are commonly named Capture Steps.

As already mentioned in Section 1.2.2, Missura [6] implemented a framework based on this concept for

soccer robots and it was used on Johnny #5 in a former thesis [5]. In [32] the Quadratic Program of

Wieber [14] was enhanced with additional parameters and constraints on the positions of the footsteps

occurring during the preview horizon. The paper gives examples of simple conditions to avoid collisions,

over-stretched legs and too high joint speeds. Nishiwaki et al. [30] also developed a method to change

the next footstep position while using ZMP-PC. When it is not necessary to change the footstep position,

they alternatively proposed to modify the duration of the current step.

Parameters Tuning
Most of the authors do not describe in details how they tuned the parameters of their software.

Some use local models as in [28], but most of them certainly tune them manually by “trial and error”

(for instance [27]). Alternatively, Fu et al. [26] proposed to determine the controller gains using Rein-

forcement Learning. However, the other parameters of the software were apparently set manually and

the robot was walking very slowly (with a step duration of 6 s).

15

3 Design of the Gait Pattern Generator

The main goal of the GPG is to generate desired CoM and feet trajectories. As explained in Section 3.1,

the CoM is actually approximated using the Center of Body (CoB). The reference frames used for the

generation of the trajectories are described in Section 3.3. For the feet, Robotis implemented Swing Foot

Trajectories that do not take obstacles or 3D terrain into account, so it was not possible for the robot to

walk up stairs for instance. In this thesis, the existing Swing Foot Trajectory implementation is improved

to add these features. The old and new methods are described in Section 3.4. Moreover in Robotis code,

the CoB was moving in a horizontal plane using ZMP-PC. In the new implementation, a CoB vertical

motion is enabled using an own Virtual Slope method based on Sato et al. work [19] (cf. Section 2.3.1).

The generation of the former and new CoB trajectories is described in Section 3.5.

Figure 3.1: Internal structure of the GPG

3.1 Center of Body

In the ZMP-PC method of Kajita et al. [10] the CoM is assumed to be a fixed point relative to the upper

body of the robot. This drastically simplifies the computation of the corresponding desired trajectories

in joint space.

For THORMANG3, Robotis defined the Center of Body (CoB) as the middle point between the hip

joints (on the hip pitch axis) as illustrated in Figure 3.2. The CoM is then approximated by the CoB

position plus a constant offset in each spatial direction. In Section 6.3.2 and Section 6.3.3 it is explained

how the horizontal and vertical offsets were determined. This assumption of a fix CoM seems acceptable,

since only the legs are moving relatively to the upper body (the arms are immobile).

3.2 Initial Pose

Before a walking experiment, the robot is brought in a predefined initial pose illustrated in Figure 3.2,

so the CoB is situated at Hcob = 0.630 m above the ground. This way the knees are bent enough to

allow the robot to walk. In this pose the ankle roll joints are vertically aligned with the hip roll joints

(dlegs = 0.186 m).

17

+

CoB

dlegs

dlegs

Hcob

Figure 3.2: Initial pose and CoB position of THORMANG3 in Gazebo

3.3 Reference Frames

In this section, the reference frames for the generation of the desired trajectories of the CoB and the feet

are described. These frames are purely mathematically constructed and correspond to the desired gait.

They are neither related to the real motion of the robot (odometry) nor to the robot perception of the

real world (cartography).

Sglobal
x

z

Srobot x

z

Scob x

z

Srf
x

z

Slf
x

z

Figure 3.3: Reference frames of the GPG

The global frame Sglobal has its origin at the (desired) CoB position at the beginning of the motion

(i.e. in the initial pose). The z axis is vertical and the x axis points in the walking direction as illustrated

in Figure 3.3. Each time a new walking motion is started, Sglobal is reinitialized to the new starting

position of the CoB.

18

The CoB frame SCoB corresponds to the CoB (desired) position and orientation during the motion,

while the robot frame Srobot corresponds to the CoB (desired) position and its yaw rotation only, i.e. its

z axis remains vertical.

The origins of the right and left foot frames Sr f and Sl f are situated at the (desired) projection of the

middle of the ankles (i.e. the intersection of the ankle roll and pitch joints) on the sole (or equivalently

the projection of the middle of the F/T sensors). It does not lay in the middle of the sole as illustrated in

Figure 3.4. The orientations of these frames correspond to the (desired) orientations of the feet during

the motion, with the x axis pointing toward the foot front and the z axis pointing upwards (orthogonal

to the sole).

SrfSrf Slfx

y

x

y

Figure 3.4: Reference frames of the feet

In the GPG the desired trajectories of the CoB and the feet (i.e of the frames Scob, Sr f and Sl f)

are generated relative to the frame Sglobal and then transformed into Srobot for the BC (cf. Section 4).

The rotation of a frame relative to the global frame orientation is described using the roll-pitch-yaw

convention (Euler ZYX angles) with the classical notation:

rol l ←→ φi

pitch←→ θi

yaw←→ψi

where i ∈ {robot, cob, r f , l f }.

3.4 Swing Foot Trajectory Generator

The foot position is represented by the 3D pose of the foot frame relative to the global frame (cf. 3.3).

The 3D Swing Foot Trajectory is generated by constructing C2-smooth trajectories of the x, y, z, roll, pitch

and yaw components of the foot pose. In the original code, the smoothness has been satisfied using a fifth

polynomial function (cf. 3.4.1). In the new code, some additional requirements have been taken into

account: smooth vertical landing, control of maximal altitude of foot and stepping over uneven terrain

or obstacles without collision. These improvements are presented in 3.4.2. In order to demonstrate

and compare the properties of the Swing Foot Trajectories, two case studies are considered: walking on

flat ground and walking up stairs as illustrated in Figure 3.5. In both cases a straight forward swinging

motion of the right foot is considered.

19

(a) step on flat ground (b) step on stairs

Figure 3.5: Case studies for the Swing Foot Trajectory

3.4.1 Robotis’ Swing Foot Trajectory

The original code makes use of a fifth polynomial function

x(t) = a0 · t5 + a1 · t4 + a2 · t3 + a3 · t2 + a4 · t + a5, t ∈ [t0, t1] (3.1)

with the six boundary conditions

x(t0) = x0, ẋ(t0) = ẋ0, ẍ(t0) = ẍ0,

x(t1) = x1, ẋ(t1) = ẋ1 and ẍ(t1) = ẍ1. (3.2)

The six coefficients are computed by solving the resulting system of equations.

This function is used to generate the trajectory of each coordinate x , y and z of the frame of the

swinging foot between the starting position at time tstar t and the goal position at time tend given by the

footstep planner (in global frame). To ensure the continuity in velocity and acceleration, the boundary

conditions of the first and second derivatives are set to zero. The resulting x, y and z ground trajectories

on flat ground are illustrated in Figure 3.6. The roll, pitch and yaw trajectories of the foot are constructed

the same way.

Since the velocity and acceleration boundary conditions are null, it can be mathematically proven

that these fifth polynomial trajectories are always monotonic (cf. Lemma 1 and its proof in Appendix B),

so the foot always stays between the start and the goal position and moves towards the latter. This is

required for every component of the Swing Foot Trajectory except for the z component. Indeed, the foot

should “swing” above the floor.

20

Figure 3.6: Robotis’ ground Swing Foot Trajectory on flat ground (x, y and z components)

For this purpose a complementary trajectory in z-direction was added, which is composed of two

fifth polynomial trajectories connected at the time tmax such that

tmax =
tstar t + tend

2
. (3.3)

For the first function the boundary conditions are

z(tstar t) = 0, ż(tstar t) = 0, z̈(tstar t) = 0,

z(tmax) =∆Z f oot , ż(tmax) = 0 and z̈(tmax) = 0 (3.4)

and for the second function

z(tmax) =∆Z f oot , ż(tmax) = 0, z̈(tmax) = 0,

z(tend) = 0, ż(tend) = 0 and z̈(tend) = 0. (3.5)

In the original code the amplitude ∆Z f oot of the swinging motion is set to 0.1 m. By adding this “swing

complement” to the ground trajectory, the continuous trajectory in z direction illustrated in Table 3.1 is

obtained. Figure 3.7 shows the resulting 3D swing foot trajectory in the x-z plane.

21

Table 3.1: Construction stages of Robotis’ Swing Foot Trajectory in z direction
flat ground stairs of 10 cm

ground trajectory

+

swing complement

=

final trajectory

(a) flat ground (b) stairs of 10 cm

Figure 3.7: Robotis’ Swing Foot Trajectory in x-z plane

Limits
The amplitude of the swing complement∆Z f oot is a constant parameter which is set manually in the

original code, i.e. it does not depend on the height of the stair. The higher the stairs are, the nearer to

the stairs the foot is swinging and the later the maximum of the trajectory is arriving. This is illustrated

in Figure 3.8. Thus in this implementation, a specific value for the maximum of the z-trajectory and its

temporal abscissa cannot be set. So it is not possible to easily adapt the Swing Foot Trajectory to an

uneven terrain. In fact, the foot forefront collides with the stairs in Figure 3.7. Symmetrically, the foot is

not rising enough above the stairs when stepping down.

22

Another limit of the original implementation is the absence of consideration of early and late land-

ing. This can occur because of modeling errors of the robot or of the terrain. As explained by Taşkıran et

al. in [27], if the foot lands earlier as planned, it will not reach the goal position in the forward direction

and will push the CoB in the opposite direction, while the other foot will continue to push it forward.

This can cause the robot to loose balance. Taşkıran et al. proposed to simply stop the motion of the

foot in the forward direction. But this leads to an error in the foot position. Alternatively, Yi et al. [28]

proposed to generate a Swing Foot Trajectory which is vertical during the landing phase, so it ensures

the reaching of the desired horizontal position and only the vertical motion has to be stopped at landing

detection (cf. Section 4.2). Moreover, in order to avoid a too strong impact on the floor by an early

landing, Yi et al. limited the vertical velocity of the landing foot. These concepts have been considered

in the design of the improved Swing Foot Trajectory (cf. Section 3.4.2).

Figure 3.8: Variation of the maximum of Robotis’ Swing Foot Trajectory in z direction for different stairs
height

3.4.2 Improved Swing Foot Trajectory

To overcome the limits of the original trajectory (cf. Section 3.4.1), a new 3D Swing Foot Trajectory has

been implemented with the following features:

• vertical landing with limited velocity

• parametrization of trajectory height

• collision avoidance using bypass points

All the constant parameters appearing in this section are listed with their values in Appendix E.

Vertical Landing
In order to achieve a vertical landing of the swing foot, obviously all horizontal components must

reach their target first [28]. In addition, the angular components (roll, pitch and yaw) must line up

with the terrain first, before starting to lower the swing foot. In this thesis the terrain is assumed to

be known, thus the generation of such trajectories is possible. Like in Robotis’ implementation, fifth

23

polynomial functions are used for the x, y, roll, pitch and yaw trajectories. However, in this thesis they

reach their target value at the approach time tappro such that

tappro = tend −∆Tappro, ∆Tappro > 0. (3.6)

The trajectories of the x, y and z components are plotted in Figure 3.9. The resulting trajectory in x-z

plane on flat ground is very similar to the original trajectory except for the vertical landing part which is

now vertical as shown in Figure 3.10.

Figure 3.9: x, y and z components of new Swing Foot Trajectory with vertical landing on flat ground

Figure 3.10: New Swing Foot Trajectory with vertical landing in x-z plane on flat ground

The new trajectory of the z component is constructed as a piecewise function whose different phases

are illustrated in Figure 3.11. While Yi et al. [28] used only quadratic functions, Buschmann [11]

implemented only fifth polynomial functions. In this thesis, both types are combined.

24

(a) step up

(b) step down

Figure 3.11: Vertical component of the new Swing Foot Trajectory on uneven ground

For the landing phase (No. 4) the quadratic function

zappro(t) =
∆Zappro

(∆Tappro)2
· (t − tend)

2 + zend , tappro ≤ t ≤ tend (3.7)

is implemented. The vertical approach distance ∆Zappro is a positive parameter. The choice of this

function was made by considering the following requirements for a smooth landing:

(i) convex polynomial function

(ii) decreasing for t ∈ [tappro, tend]

(iii) satisfying the four boundary conditions:

z(tappro) = zappro, z(tend) = zend , ż(tend) = 0 and z̈(tend) = 0 (3.8)

with zappro = zend +∆Zappro (3.9)

25

(iv) having the smallest possible derivative at time tappro

It can be mathematically proven that all these requirements are satisfied by the implemented quadratic

trajectory. Requirement (iv) is illustrated in Figure 3.12. Thus, the maximal vertical velocity Vmax of the

quadratic landing trajectory on the interval [tappro, tend] is

Vmax = ż(tappro) = −
2 ·∆Zappro

∆Tappro
(3.10)

and can be adapted to the robot and the gait by tuning the approach parameters ∆Zappro and ∆Tappro.

Figure 3.12: Comparison between polynomial trajectories of different orders verifying requirements (i),
(ii) and (iii)

For the raising and decreasing phases of the trajectory (No. 1 and No. 3, cf. Figure 3.11), fifth

polynomial functions were used in order to satisfy the boundary conditions in position, velocity and

acceleration:

z(tstar t) = 0, ż(tstar t) = 0, z̈(tstar t) = 0,

z(tmax ,star t) = zmax , ż(tmax ,star t) = 0, z̈(tmax ,star t) = 0,

z(tmax ,end) = zmax , ż(tmax ,end) = 0, z̈(tmax ,end) = 0,

z(tappro) = zappro, ż(tappro) = Vmax and z̈(tappro) = Aappro (3.11)

where the approach acceleration Aappro is defined as

Aappro =
2 ·∆Zappro

∆T 2
appro

. (3.12)

26

Parametrization of Trajectory Height
The maximum of the vertical trajectory has to be limited by a parameter ∆Zmax in order to ensure

kinematic feasibility. At the same time, the foot is supposed to raise at a sufficient height (≥ ∆Zmin)

above the ground in order to avoid undesirable contacts with the ground and to be compatible with the

approach trajectory implementation. To sum up, the following constraints apply:

zmax −min(zstar t , zend)≤∆Zmax (3.13a)

zmax − zstar t ≥∆Zmin (3.13b)

zmax − zend ≥∆Zappro,min (3.13c)

In order to have a smooth decreasing trajectory during the phases No. 3 and No. 4, the minimal global

approach distance ∆Zappro,min above the goal position (i.e. not only during the vertical approach phase)

is set as follows:

∆Zappro,min = 2 ·∆Zappro. (3.14)

If during the trajectory generation one of the constraint is not satisfied, a ROS warn message is generated,

a false boolean is returned and a null trajectory is generated. This can for instance occur if the difference

between zstar t and zend is too high. For the nominal trajectory (i.e. without consideration of bypass

points) the parameters are set as follows:

zmax =max(zstar t +∆Zmin, zend +∆Zappro,min) (3.15a)

tmax ,star t = tmax ,end =
1
2
(tstar t + tappro) (3.15b)

Since the velocity and acceleration boundary conditions of phase No. 3 are not all equal to zero, the

trajectory is not necessarily monotonic decreasing on [tmax ,end , tappro]. To remedy this, the parameter

tmax ,end is increased until the velocity is negative on [tmax ,end , tappro]. Since directly checking the sign of

the velocity on the whole interval is not feasible, equivalent criteria have been derived and are described

in Appendix B. This method always leads to a solution (cf. Lemma 2 in Appendix B).

Bypass Points
In order to avoid collisions with known obstacles such as stairs, a list of bypass points can be passed

as input of the Swing Foot Trajectory Generator. The bypass points are computed by the footstep planner

using the knowledge of the terrain and taking safety margins around the obstacles into account, such

that if the Swing Foot Trajectory (of the middle of the foot) passes above these bypass points in the x-z

plane of the robot frame, the foot will not collide with the obstacle. The computation of the bypass

points is not part of this thesis because it is the role of the Footstep Planner.

The generation of the Swing Foot Trajectory considering the given bypass points works as follows.

First, the nominal trajectory explained above is generated. Then, for each bypass point the trajectory is

gradually expended until it contains the considered bypass point. The detailed procedure is written as

pseudo-code in Appendix C and an example of the generated trajectories on stairs is given in Figure 3.13.

27

This simple iterative approach has been chosen since it is a marginal issue of this thesis and it

is still real time capable. Indeed, for a very high bypass point (25 cm) that is very near to the start

step (distance of 5 mm), the update of the trajectory by considering bypass points costs about 0.07 ms

additional execution time. For a very high bypass point (25 cm) that is very near to the goal step (distance

of 5 mm), it sinks to 0.02 ms. So the consideration of one bypass point costs less than 1% of the cycle

time (8 ms). The execution time is low because computing one 5th polynomial part of the Swing Foot

Trajectory mainly consists in solving the system of the boundary equations (3.2), i.e. computing the

inverse of 6x6-matrix and multiplying it with a 6x1-vector.

During the computation of the trajectory, the validity of each bypass point is checked. If a bypass

point leads to an infeasible trajectory, a false boolean is returned and a null trajectory is generated as for

an infeasible nominal trajectory.

(a) step up

(b) step down

Figure 3.13: New Swing Foot Trajectory on stairs of 15 cm considering bypass points. The dashed lines
represent the front of the foot in (a) and the back of the foot in (b).

Further Improvements
By implementing this new Swing Foot Trajectory, the following goals have been achieved:

• vertical landing to improve balance and precision of motion

• collision avoidance for straight forward motion

Because the bypass points are only considered in the x (and z) direction of the global frame, the collision

avoidance is only available for straight forward motions. This could be extending to all kind of motions

by generating the Swing Foot Trajectory in the frame of the stance foot that is about to swing and then

28

transforming it into the global frame. Moreover, the achieved collision avoidance could be improved by

adapting the y, roll, pitch and yaw trajectories too, so the robot would be able to better pass a wider

range of obstacles, as in [33] for instance.

3.5 Center of Body Trajectory Generator

The ZMP-PC of Kajita et al. [10] has already been implemented by Robotis for the generation of the CoM

trajectory in the horizontal directions (cf. equations (2.3) in Section 2.2). The CoB then is computed

using the horizontal offsets. The former and new methods to generate the relative vertical motion of the

CoB (equivalently CoM) are described in Section 3.5.1 and Section 3.5.2. The desired orientation of the

CoB is generated as explained in Section 3.5.3.

3.5.1 Robotis’ Vertical Trajectory of the Center of Body

In Robotis implementation the CoB is moving at a fixed height relative to the global frame, without con-

sidering the height of the planned footstep. This leads to undesired effects. For instance by walking up

stairs, the distance between the feet and the upper body was always becoming smaller (cf. Section 7.4).

To this constant height Robotis added what they called a “swap” motion, which was implemented

exactly like the swing complement of the feet (cf. Table 3.1) but with an amplitude ∆Zcob = 0.01 m.

There was no explanation on its purpose, so it was tested by making the robot walk with and without it.

The results are presented in Section 6.2.1.

3.5.2 New Vertical Motion of the Center of Body using Virtual Slopes

In order to enable the vertical motion of the CoB accordingly to the terrain, the VS of Sato et al. [19] is

implemented (cf. Section 2.3.1) but between two ZMP references. This way, the virtual ZMP reference

for the ZMP-PC exactly corresponds to the real ZMP reference, since it already lays on the VS. In [19]

the virtual ZMP is placed inside the virtual support polygon which is computed based on the estimated

future CoM movement (no details about how to do it in the paper). In the new proposed method these

additional computations are dropped. Since the CoB has to move parallel to the VS and keep the same

height above it, the linear height trajectory is changed when the CoB passes above the middle of the

stance foot (SSP) in the walking direction as illustrated in Figure 3.14.

In [19] it was not mentioned when to “switch” between two Virtual Slopes. To our knowledge,

in the literature only methods that switch in the DSP were proposed. For instance Yi et al. [28] did a

similar CoM height adjustment but changed the trajectory during the DSP. In fact, because the robot has

no knowledge of the terrain, the CoM vertical motion can only be determined after the landing of the

swinging foot. At this moment, the local height of the terrain is estimated using sensory feedback and

the plane in which the CoM should move is determined. Since the software of Johnny #5 knows the

shape of the terrain, it is possible to already adapt the CoM motion (i.e. the CoB motion) in the SSP.

Huang et al. [23] also placed the transition between the VS during the DSP. In their method, this results

to the disadvantage that the CoM height above the feet changes (cf. Section 2.3). Sun et al. [20] also

constructed each new VS during the DSP (which they name Virtual Contact Plane), however between

the two actual ZMP references and the ZMP reference corresponding to the next footstep position.

29

Virtual
Slope

+

+

+

(a) On stairs

Virtual
Slope+

+

+

(b) On a slope

Figure 3.14: Virtual Slope between ZMP references

3.5.3 Trajectories of the Center of Body Orientation

If a different orientation of the upper body (i.e. of the CoB) is given by the Footstep Planner, the fifth

polynomial function is used to generate the corresponding roll, pitch and yaw trajectories of the CoB.

This is done similarly to the feet orientation trajectories. This has already been implemented by Robotis.

The Footstep Planner transmits a different yaw angle when the robot is supposed to follow a curved

trajectory. The roll and pitch angles are always set to zero.

Further Improvements
When walking on an uneven terrain, it could be an advantage to lean the upper body, for instance

to the front on an upslope to reduce the torque in the knees and improve the stability. However, the

desired roll and pitch angles should not be determined by the Footstep Planner, but by the GPG itself.

30

4 Design of the Balance Control

The BC gets the 3D trajectories of the feet and CoB generated by the GPG as inputs. These trajectories

correspond to the desired positions and orientations of Scob, Sr f and Sl f relative to Srobot . The Balance

Controllers modify these trajectories depending on the feedback of the sensors. The corresponding joint

trajectories are computed using IK and are tracked with a PD controller. Afterwards, the joint trajectories

generated by the BC are sent to the servomotors. The described procedure is illustrated in Figure 4.1.

In Section 4.1 the balance controllers implemented by Robotis are presented, while Section 4.2 deals

with the new balance controllers. All the controllers are discretized using backwards difference. The IK

and PD Tracking of the joint trajectories implemented by Robotis were kept unchanged. Numerous safety

features were added to the BC software to enable safe testing by avoiding hazardous motions of the robot

(cf. Section 4.3).

Figure 4.1: Internal structure of the BC

4.1 Robotis’ Balance Control of the Feet

Robotis implemented a feet control based on the measures of the F/T sensors and the IMU (cf. Fig-

ure 4.3). The noise of these measures is filtered as explained in Section 4.1.1. The used IMU and F/T

controls are presented in Section 4.1.2 and Section 4.1.3 respectively. Weaknesses of Robotis’ Balance

Controllers explaining why the robot sometimes falls over are expounded in Section 4.1.5.

4.1.1 Low-Pass Filters

Robotis implemented digital low-pass filters, which are kept unchanged in the new walking software. In

the continuous-time domain, the equation of the filter is

x(t) = y(t) +
1
ωc
·

d y
d t

(4.1)

where x(t) is the input signal of the filter, y(t) the output signal and ωc the cut-off pulsation of the filter.

31

This equation is converted into the discrete-time domain using backwards difference, which leads

to the implemented relation

yi = αx i + (1−α)yi−1 (4.2)

where

α=
2π fc Ts

1+ 2π fc Ts
and fc =

ωc

2π
. (4.3)

and Ts is the sampling time. The cut off frequencies fc chosen by Robotis for the IMU and the F/T sensors

are listed in Table E.4.

Remark
For the sake of simplicity all variables with a superscripted “meas” (e.g. xmeas) in this thesis corre-

spond to the filtered values.

4.1.2 Robotis’ IMU Control

The IMU control ensures that the upper body remains vertical by changing the feet orientation around

their own frame. Two decoupled control loops were built, one for the roll control and one for the pitch

control. Since they are identically implemented, in the following only the roll control loop is considered.

It corresponds to a PD controller on the error of the roll angle, i.e. in continuous-time domain:

∆φimu = −(kp · eφ + kd · ėφ), eφ = φ
des −φmeas (4.4)

where ∆φimu is the roll angle correction for each foot relative to the corresponding foot frame, φdes the

desired, φmeas the measured roll angle of the upper body and kp and kd the positive proportional and

derivative gains of the controller. The PD controller is preceded by a minus sign because the feet have

to rotate in the same direction as the measured inclination of the upper body. Indeed, this will make the

upper body rotate in the opposite direction. Since the IMU not only measures angles (φmeas) but also

angular velocities (v meas
φ

), no calculation of the derivative of φmeas (i.e. φ̇meas) is needed and the PD

controller is implemented as two P controllers:

∆φimu = −(kp1 · (φdes −φmeas)
  

∆φimu,1

+ kp2 · (v des
φ − v meas

φ)
  

∆φimu,2

) (4.5)

where the desired roll angle φdes and velocity v des
φ

are set to zero.

Because of these roll and pitch corrections, the feet are generally not coplanar during the DSP. This

is probably why Robotis added an additional correction of the feet height ∆zimu,i computed as follows:

∆zimu,r f =
�

0 0 1
�

·R(y,∆θimu) ·R(x ,∆φimu) ·

⎡

⎢

⎣

x des
mid→r f

ydes
mid→r f

0

⎤

⎥

⎦
(4.6)

32

where

x des
mid→r f =

1
2
(x des

robot→r f − x des
robot→l f) (4.7)

ydes
mid→r f =

1
2
(ydes

robot→r f − ydes
robot→l f) (4.8)

and R(x ,α) is the standard notation of a 3D rotation matrix describing a rotation of an angle α around

the axis x . For the other foot, the correction then is

∆zimu,l f = −∆zimu,r f . (4.9)

Later, by designing a new IMU control it has been established that this correction is incomplete to

keep the feet coplanar. This is explained in detail in Section 4.2.2.

4.1.3 Robotis’ Force/Torque Control

The F/T measures are rotated to correspond to the robot frame orientation. Robotis made the assumption

that the measures are made at the origin of the foot frame (under the sole). This assumption is discussed

in Section 4.2.5.

The walking is divided into nine Balancing Phases (cf. Section 4.2.1) which are used to generate

the trajectory of the desired vertical forces F des
z,i (i ∈ {r f , l f }). Their absolute value is set to half of the

weight of the robot when standing in the initial pose (cf. Section 3.2). During a SSP it is set to the total

weight for the stance foot and to zero for the swinging foot. For a DSPs between two SSPs, the desired

force is interpolated with a sigmoid function between the values in both SSPs. Since the z axis is directed

upwards, F des
z,i is negative. The desired torques are all zero and the desired horizontal forces are set to

F des
x ,i = −

1
2

mtotal ẍ
des
com (4.10)

where mtotal is the total mass of the robot and ẍ des
com is the acceleration of the CoM in x direction generated

by the ZMP-PC. The same applies in y direction. Based on these desired values, the PD controllers listed

below were implemented:

(F des
x ,i − F meas

x ,i)
PD
−−→∆x f t,i

(F des
y,i − F meas

y,i)
PD
−−→∆y f t,i

(F des
z,i − F meas

z,i)
PD
−−→∆z f t,i

(τdes
x ,i −τ

meas
x ,i)

PD
−−→∆φ f t,i

(τdes
y,i −τ

meas
y,i)

PD
−−→∆θ f t,i

33

4.1.4 Robotis’ Controllers Summary

The total correction of the orientation and the position of the feet computed by Robotis’ BC is

∆φi =∆φimu +∆φ f t,i

∆θi =∆θimu +∆θ f t,i

∆x i =∆x f t,i (4.11)

∆yi =∆y f t,i

∆zi =∆zimu,i +∆z f t,i

where i ∈ {r f , l f }. The controllers corresponding to these correction variables are listed in Appendix E.

4.1.5 Limits

The most frequent reason why the robot fell over was the following. The assumption is made that the

robot is walking and that the current phase is a SSP on the right foot. When the robot begins to slightly

tip over the outer edge of the stance foot, then both feet increase their roll angle (IMU control) and the

left foot moves in the upper z direction because of the additional z correction of the IMU control. This

leads to a bigger distance between the left foot and the ground (cf. Figure 4.2) and makes this foot touch

the ground much later than planned. In Appendix F Figure F.2, snapshots from a walking experiment,

during which this phenomenon appeared, are collected. When the robot begins to tilt back to the left

and the swinging foot finally touches the ground, the CoB reaches a high velocity and this causes the

robot to lean even more to the left than it did to the right. At this moment the robot either falls over or

tilts back to the right with an even bigger velocity and falls over on the other side. Moreover, in such a

situation the late landing of the swinging foot sometimes occurs after the beginning of the swing phase

for the other foot that is still on the ground. This causes the swinging foot to brutally enter in contact

with the ground and destabilize the robot even more.

Because of this lack of robustness of the IMU control for large roll angles of the upper body, an

additional control loop was added whose aim is to maintain the ZMP inside the support polygon (cf.

Section 4.2.6).

with IMU
Control

without
BC

right foot left footy

z

with IMU
Control

without
BC

right foot left foot

Figure 4.2: Feet positions at the end of a SSP when the robot is tipping over (comparison with IMU con-
trol/without any Balance Controllers)

34

4.2 Improved Balance Control of the Feet and Center of Mass

In the new BC the IMU control was slightly changed (cf. Section 4.2.2), new controllers were imple-

mented in the F/T control loop (cf. Section 4.2.3) and a ZMP control was added (cf. Section 4.2.6). The

modifications of the global structure are illustrated in Figure 4.3. For the ZMP control, the position of

the real ZMP (respectively of the virtual ZMP on the virtual slope) needs to be estimated as explained in

Section 4.2.5.

Instead of having all controllers active all the time like in Robotis implementation, the walking gait

is divided in new phases (cf. Section 4.2.1) during which only specific controllers are activated as in

[26].

Figure 4.3: Block diagram of the Balance Controllers. The already existing blocks are drawn in black and
the new block in red.

4.2.1 Balance Control Phases and Landing Detector

Robotis’ Balance Controllers are always active. This means that even if a foot is swinging, a rotation and

position correction is applied although it cannot influence on the stability of the robot. Therefore, status

variables are implemented that enable to define adapted activation phases for the different controllers

(cf. Table 4.1). The Balancing Phases correspond Robotis’ Balancing Phases used to determine F des
z,i

(cf. Section 4.1.3), except that raising and landing phases were added. Some authors also used similar

activation phases, especially for controlling the landing of the swinging foot [15, 26, 28].

Since this foot never exactly lands at the planned time but some controllers have to be started at

the moment when the foot touches the ground, a Landing Detector is implemented. Its output is set

to true when F meas
z,i is under the predefined landing threshold (here −150 N) and to false when it is

above the predefined swinging threshold (here −50 N). Based on this detection the landing status of the

considered foot is updated. In the next sections the different Balance Controllers are described as well

as during which phases they are activated.

35

Table 4.1: Status variables of the new BC for a walking gait of two default steps (step duration of 1 s).
The first step illustrates the case of early landing (earlier than planned), while the second step
covers the case of late landing.

Balancing
Phase

Fi
rs

t S
te

p
Bo

ol
ea

n

La
st

 S
te

p
Bo

ol
ea

n

La
nd

in
g

D
et

ec
ti
on

 R
ig

ht

La
nd

in
g

D
et

ec
ti
on

 L
ef

t

Landing Status
Right

Landing Status
Left

HAS_NOT_LANDED

LATE_LANDING

NO_LANDING

Timeline
[s]

0
STANDING

0.1

0.5

2

DSP_MID_TO_L

LANDING_R

DSP_L_TO_MID

DSP_MID_TO_R

RAISING_R

RAISING_L

1.9

LANDING_L

DSP_R_TO_MID

0.9

1

1.1

1.5
true

false

true
STANDING

true

false

false

true

NO_LANDING

NO_LANDING

SWINGING_R_1

SWINGING_R_2

SWINGING_L_1

SWINGING_L_2

EARLY_LANDING

NO_LANDING
HAS_NOT_LANDED

true

true
false

4.2.2 New IMU Control

The IMU control is always activated because the upper body inclination is supposed to be permanently

controlled. Robotis’ implementation was kept the same, except that corrections in the x and y direction

36

were added, such that the feet are in fact coplanar during the DSP (on flat ground) and keep the exact

same relative position during the SSP. This modifies equation (4.6) into

⎡

⎢

⎣

∆x imu,r f

∆yimu,r f

∆zimu,r f

⎤

⎥

⎦
= R(y,∆θimu)R(x ,∆φimu)

⎡

⎢

⎣

x des
mid→r f

ydes
mid→r f

zdes
mid→r f

⎤

⎥

⎦
−

⎡

⎢

⎣

x des
mid→r f

ydes
mid→r f

zdes
mid→r f

⎤

⎥

⎦
(4.12)

and
⎡

⎢

⎣

∆x imu,l f

∆yimu,l f

∆zimu,l f

⎤

⎥

⎦
= −

⎡

⎢

⎣

∆x imu,r f

∆yimu,r f

∆zimu,r f

⎤

⎥

⎦
. (4.13)

As shown in Figure 4.4, when not considering the y correction, the feet are slightly more apart and

not coplanar any more. During a swing phase these discrepancies increase due to the vertical relative

position of the feet (zdes
l f→r f) was neither considered. It is not known if Robotis neglected it on purpose.

Assuming that the right foot is currently situated at the highest point of the Swing Foot Trajectory (or

equivalently on a stair of 0.1 m) and that the roll inclination error amounts 0.05 rad, i.e.

ydes
mid→r f = −0.093, zdes

mid→r f = 0.05,

∆φimu = 0.05 rad (≈ 2.9◦) and ∆θimu = 0 rad, (4.14)

the y correction ∆yimu,r f amounts to 2.6 mm. So the relative distance of the feet in the y direction is

changed of 5.2 mm, which does not seem negligible. Thus, this additional horizontal correction should

be tested on the real robot to verify if it has a noticeable effect. It was not achieved in this thesis because

the BC could not be tuned as explained in Section 6.4.3.

with new
IMU Control

without
BC

y

z

+
z correction

y correction

roll
correction

+

+

+

+

Figure 4.4: Geometrical signification of the position correction of the IMU control

37

4.2.3 New Force/Torque Control

The controllers of the horizontal forces were removed because the feet cannot move in the horizontal

directions while in contact with the ground. This was validated by tests on the real robot (cf. Sec-

tion 6.2.2).

Though, the adaption towards uneven terrain requires to keep the controllers of the horizontal

torques. During the swing phase all torques and therewith correction terms become zero. Hence, an

active switching of these controllers is neglected.

The controller of the vertical force is replaced by a landing controller activated for a short period

of time beginning at the landing detection and a terrain adaptation controller activated during the DSP,

which are the two most common types of vertical force controllers in the literature [27, 28, 34, 35].

The vertical adaptation towards uneven terrain could be done by the PD controllers implemented by

Robotis. However, due to calibration offsets or perturbations in the F/T measures (cf. Section 6.4.1),

the desired vertical force is not always reachable. More particularly, the goal of the adaptation control

during the DSP is not to reach the desired vertical forces F des
z,i but to equalize the measured forces on

both feet (F meas
z,r f = F meas

z,l f). Therefore, a global PD controller was implemented (instead of local ones for

each foot) which takes the target force disparity ∆F des
z = F des

z,r f − F des
z,l f as desired value and the measured

force disparity ∆F meas
z = F meas

z,r f − F meas
z,l f as feedback value (as in [34] or [35] but with another controller

type):

(∆F des
z −∆F meas

z)
PD
−−→∆zdsp (4.15)

∆zdsp,r f = 0.5 ·∆zdsp (4.16)

∆zdsp,l f = −0.5 ·∆zdsp (4.17)

The generation of the desired vertical force trajectories remains the same as in Robotis’ implementation.

This controller is activated during the landing of the swinging foot or at the latest during the beginning

of the balancing phase “DSP_L_TO_MID” or “DSP_R_TO_MID” (cf. Table 4.1) and is deactivated when

one of the landing detectors returns false (after both have returned true). Thus, in case of late landing,

the controller is activated before the landing and makes the foot move faster toward the ground because

at this moment ∆F des
z = 0 and ∆F meas

z ≈ ±mtotal g. This enables to diminish the delay of the landing.

In order to reduce the impact during the landing phase, a dedicated landing controller is also im-

plemented. First of all, if the foot lands earlier than planned, its vertical motion is stopped by adding an

offset correction ∆zo f f set,i. At this time, the absolute value of the desired vertical force of the considered

foot is possibly smaller than the absolute measured value at the impact. Thus, using this desired value

in a control loop would make the foot bounce back in the air. In order to overcome this problem, the

desired force is set to the measured force at the impact and is brought to the total weight of the robot

using a part of a sinusoidal function. This procedure was proposed in [28] with a linear function. This

modification of the desired vertical forces is used for the terrain adaptation controller presented above

and for the landing controller. In the literature different types of controllers can be found for the impact

38

reduction (cf. Section 2.4). In this thesis it was decided to keep the possibility to test different types by

implementing the following mass-spring-damper controller:

km∆z̈landing,i + kd∆żlanding,i + kp∆zlanding,i = (F
des
z,i − F meas

z,i) (4.18)

where the vertical correction of the foot position ∆zlanding,i (i ∈ {r f , l f }) is the ouput of the landing

controller. The gains km, kd or kp can be set to zero depending on which type of controller is to be tested

(for instance km = kd = 0 to obtain a P controller as in [26]). As explained earlier, this equation is

discretized using backwards difference.

At the end of the DSP, the correction of the vertical force control (∆zdsp,i+∆zo f f set,i+∆zlanding,i) is

generally non null. In order to avoid disturbing the next landing phase, it is smoothly returned to zero

during the SSP using a fifth polynomial function (whose implementation is described in Section 3.4.1).

4.2.4 New Feet Controllers Summary

The total correction of the orientation and the position of the feet computed by the new BC is

∆φi =∆φimu +∆φ f t,i

∆θi =∆θimu +∆θ f t,i

∆x i = (∆x f t,i) +∆x imu,i (4.19)

∆yi = (∆y f t,i) +∆yimu,i

∆zi =∆zimu,i + (∆z f t,i) +∆zdsp,i +∆zo f f set,i +∆zlanding,i

where i ∈ {r f , l f }. The terms in red were implemented by Robotis and are removed in the new BC. The

terms in black are kept unchanged, the terms in violet are slightly modified and the terms in blue are

new. The controllers corresponding to these correction variables are listed in Appendix E.

4.2.5 Estimation of the Real/Virtual ZMP

The measures from the F/T sensors are used to compute an estimation of the position of the real ZMP

relative to Srobot . The scaled measures F scaled
i

and τscaled
i

(i ∈ {r, l}) are in a frame whose origin is at

the center of the sensor and whose axes are parallel to the axes of the corresponding foot frame (Sr f or

Sl f). In order to be used in the walking software, these measures have to be transformed into a frame

S∗r f (resp. S∗l f) which has the same origin as Sr f (resp. Sl f) and the same orientation as Srobot :

(

Fmeas
i

= Rr obot→i · F scaled
i

τmeas
i

= Rr obot→i · (τscaled
i

+ r f t × F scaled
i

)
(4.20)

39

where

r f t =

⎡

⎢

⎣

0

0

0.0275 m

⎤

⎥

⎦
(4.21)

is the translation from the Sr f (resp. Sl f) to the center of the corresponding F/T sensor relative to S∗r f

(resp. S∗l f) and Rr obot→i is the rotation from Srobot to Si f .

In Robotis code, the term r f t × Fmeas
i

was not considered. It was decided to also neglect this term

in this thesis, since it is of an order of magnitude smaller than the usual torques values and it would add

more noise and errors in τmeas
i

. Indeed, as explained in Section 6.4.1 the measures from the F/T are very

noisy and can punctually have an error of up to 30% of the used range. Only when the measurements

become better, this term should be considered.

Based on the transformed measures Fmeas
i

and τmeas
i

, the ZMP position relative to Srobot can be

computed. The calculation is different depending on the actual support phase (DSP or SSP on right or

left foot) and is explained in the next paragraphs. The calculated ZMP corresponds to the virtual ZMP

defined by Sato et al. [19] and the way of computing it was inspired from the paper of Sun et al. [20].

In order to know which foot is actually on the ground, the landing detector is used. For visualization

purposes the estimated ZMP is transformed into the global frame.

This is an estimation of the ZMP because the desired relative positions of the feet are used for the

calculation instead of the real relative positions. This approximation has an influence only in the DSP.

This is acceptable since the most critical phase for the ZMP control is the SSP (because of the smaller

support polygon).

ZMP Estimation at SSP

In this paragraph the subscript i is used to denote the stance foot which can be either the right

(i = r f) or the left (i = l f) foot. As in [19], if assuming that the moments are null at the ZMP, its

position vector p̂i relative to S∗i verifies

p̂i × Fmeas
i = τmeas

i (4.22)

which can also be written as the following system of equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

F meas
z,i p̂y,i − F meas

y,i p̂z,i = τmeas
x ,i

F meas
x ,i p̂z,i − F meas

z,i p̂x ,i = τmeas
y,i

F meas
y,i p̂x ,i − F meas

x ,i p̂y,i = τmeas
z,i

(4.23)

Because of the cross product the solution is a 3D line equation named the Zero-Moment Line (ZML) [19]

as already mentioned in Section 2.3.1. Hence, only two equations of the system (4.23) are needed to

solve it. Since F meas
z,i is always non null (the foot is on the ground) and F meas

x ,i and F meas
y,i can possibly be

both zero, the two first equations of (4.23) are kept.

40

As described in Section 2.3, in order to overcome the definition problem of the ZMP on all kind of

terrain, the ZMP is situated at the intersection between the Zero-Moment Line and the Virtual Slope. It

is actually a virtual ZMP, however the word “virtual” will be most of the time omitted in the rest of this

thesis for practicality. The general equation of the Virtual Slope is

kx p̂x ,i + ky p̂y,i + kz p̂z,i = c0. (4.24)

For a Virtual Slope between two planned footsteps as described in Section 3.5.2, the parameter c0 is zero.

For straight forward motions the other parameters are

kx = const, ky = 0 and kz = −1. (4.25)

The two first equations of system (4.23) and the Virtual Slope equation (4.24) can be transformed into

the following matrix equation:

Fi p̂i = Vi (4.26)

where

Fi =

⎡

⎢

⎣

0 F meas
z,i −F meas

y,i

−F meas
z,i 0 F meas

x ,i

kx ky kz

⎤

⎥

⎦
, p̂i =

⎡

⎢

⎣

p̂x ,i

p̂y,i

p̂z,i

⎤

⎥

⎦
and Vi =

⎡

⎢

⎣

τx ,i

τy,i

c0

⎤

⎥

⎦
(4.27)

Then the solution p̂i is transformed into the robot frame to obtain a final estimation of the ZMP in a

common frame independently of the actual stance foot:

pes t = rr obot→i +Fi
−1Vi (4.28)

where rr obot→i is the translation vector from the robot frame to the right or left foot frame. In order to

verify if the matrix Fi is always invertible, its determinant is considered:

detFi = F meas
z,i (F

meas
i · n) (4.29)

where

n =

⎡

⎢

⎣

kx

ky

kz

⎤

⎥

⎦
(4.30)

is a normal vector to the Virtual Slope. Since F meas
z,i is non null, the matrix Fi is non invertible if and

only if the Virtual Slope and the force vector Fmeas
i

are parallel. Since the Virtual Slope is constructed

between two footsteps, it is under 100% grade (45◦), otherwise the motion would not be feasible. On

41

the other hand, the force in z direction is always bigger than the forces in x and y direction when the

foot is on the ground, so the force vector Fmeas
i

cannot be parallel to the VS.

Similar equations apply for the ZMP estimation in the DSP and are presented in Appendix D.

Virtual ZMP vs. Extended ZMP
As already mentioned our estimated ZMP corresponds to the virtual ZMP defined by Sato et al. [19],

i.e. to the point on the VS where all the moments of the ground reaction are null (considering the whole

force reaction). However in the definition of ZMP only the force orthogonal to the ground is considered

and only the moments parallel to the ground have to be zero. Sato et al. did not explain why they

considered all moments to be null.

Sun et al. [20] proposed another method (EZMP method, cf. Section 2.3.1) where only the force

orthogonal to the VCP is considered and only the moments parallel to the VCP have to be zero to calculate

the EZMP position. Hence, this point is conform to the definition of ZMP [16]. On flat ground both

methods lead to the same equations, i.e. the ZMP is on the Zero-Moment Line (cf. proof in Appendix D).

This definition of EZMP could be used to compute our estimated ZMP. However, it is not obvious

which method is better. Indeed, on stairs in the SSP the real ZMP is on the ZML(as on flat ground).

Thus, an advantage of the virtual ZMP method is that there is a simple relation between the real and the

virtual ZMP (on local horizontal ground), since both are on the ZML. On the contrary the EZMP of Sun

et al. has no explicit relation with the real ZMP. Moreover, this method of EZMP was used with a triple

preview control which differs from the implemented VS method.

We had no time to investigate both methods and chose to implement the virtual ZMP since our GPG

is based on the same equations and a similar VS method. Moreover, the EZMP method was only tested

in simulation [20] while the virtual ZMP method was also successfully tested on a real robot [19].

4.2.6 ZMP Control

In the GPG the desired CoM trajectory is generated from the desired ZMP reference. Thus, it seems logical

to control the ZMP error (difference between the desired and estimated ZMP) by directly changing the

CoM horizontal position. For this purpose PD controllers were implemented for the x and y correction

and are always activated.

4.3 Safety Features

Safety features are really important for testing the software on the real robot to avoid hazardous motions

for the robot itself and for humans around. This generally means, when a malfunctioning is detected,

the motion has to stop (i.e. no new command values are sent to the motors). This is done by adding

specific detectors described in the following sections. Except for the saturation functions in the BC there

were no safety features in Robotis software.

4.3.1 Saturation of the Balance Control Correction

The BC correction is saturated to prevent the robot from doing too large movements. In this case,

the whole motion of the robot is not supposed to be stopped, since it does not necessarily means that

something is going wrong or that the system became unstable. However, the saturation values chosen

42

by Robotis were too large, making it possible for the robot to collide with itself. Thus, new values were

determined based on the standard correction values when the robot is stably walking. The old and new

values are listed in Appendix E.

4.3.2 Fall Detection

When the pitch or roll absolute angles measured by the IMU are bigger than 0.23 rad (≈ 13◦), the

motion of the robot is stopped because the robot is surely falling over. This threshold value has been

set by comparing the measured angle values when the robot was stably walking with the values when it

tipped over during walking.

4.3.3 Detection of Communication Break Down

By running experiments on the real robot, communication break downs have sometimes been encoun-

tered in the right leg of the robot, i.e. no new measures were being received from the encoders and the

F/T sensors. In such a situation, the robot has an unpredictable behavior and tips over because the BC

cannot work correctly without sensory feedback.

In order to avoid this hazardous reaction of the robot, a detector of communication break downs was

implemented. It stops the motion if the measures received from the IMU or from the F/T sensors keep

the same value for a given period. Because of the noise of these sensors, this only happens, when the

communication fails. On the contrary, this detector cannot be applied to the encoder measures because

they take discrete values and may therefore stay constant during a long period even if the communication

works perfectly. Since the F/T sensors are at the end of the communication chain which goes through

the motors of the leg to the serial board, any break in the chain will affect the F/T measures. Therefore,

there is no need to implement an extra detector for the encoder measures.

This new safety feature has successfully been tested by turning on the Balance Control when the

robot is in the air in the initial pose and disconnecting a communication cable from the serial board.

Later, it has been found out that the communication break downs in the right leg were caused by a

defective motor in the chain which was then replaced.

43

5 Implementation

The existing software of Robotis was not well structured, hence it was very time-consuming to develop

it further (cf. Section 5.1). So it was decided to implement it in a new modular structure named the

Legged Locomotion Library (l3) which is presented in Section 5.2. Moreover, a 2D visualization tool

is implemented in order to better evaluate the performances of the algorithms (cf. Section 5.3). The

former as well as the new walking software are based on ROS and C++.

5.1 Robotis’ Code Structure

The part of Robotis’ software directly responsible for the walking of the robot is mainly composed of two

ROS packages:

• the thormang3_walking_module package which contains the GPG, the IK and the PD Tracking

blocks (cf. Figure 4.1)

• the thormang3_balance_control package which contains the Balance Controllers and is called by

the previous package

Inside this packages the code is essentially divided in only two large process() functions. This absence

of clear structure hinders code readability and development. Moreover, instead of classically make use

of the existing Unified Robot Description Format (URDF) files1, the IK was implemented based on hard

coded values. Generally, most of the parameters were manually set in initialize() functions to a fixed

value and sometimes in several functions at the same time. This does not permit an easy change of the

parameter values and can lead to inconsistencies in the code. Robotis’ walking software is open source

on GitHub and can be found at the following link:

https://github.com/ROBOTIS-GIT/ROBOTIS-THORMANG-MPC

The version implemented on Johnny #5 before the beginning of this thesis can be found in this other

GitHub repository:

https://github.com/thor-mang/ROBOTIS-THORMANG-MPC

5.2 New Implementation

The main goal of implementing a library structure is to have the possibility to easily test different methods

as the ones presented in Section 2.3 and Section 2.4 and thus to gradually improve the code. For instance

it could enable to test different Swing Foot Trajectories, different Balance Controllers, etc. On the long

term the other goal is to make l3 open source and thus it should be implemented such a way that it can

easily be adapted to different humanoid robots.

The re-implementation itself of Robotis’ software into a library is a parallel project conducted by

another student. However, it uses the knowledge acquired in this thesis about humanoid walking and

especially about ZMP-PC methods and the abstract structure of l3 was elaborated collectively. Sadly, the

project was not finished before the end of this thesis. Nevertheless, our improvements of the walking

1 http://wiki.ros.org/urdf

45

https://github.com/ROBOTIS-GIT/ROBOTIS-THORMANG-MPC
https://github.com/thor-mang/ROBOTIS-THORMANG-MPC
http://wiki.ros.org/urdf

software will be added into l3 when the time comes. The improved walking software is stored on the

internal server of the SIM lab (as well as l3) under the following link:

https://git.sim.informatik.tu-darmstadt.de/ThorMangDev/ROBOTIS-THORMANG-MPC

Other parts of the software of Johnny # 5 had to be adapted and the modifications are saved in branches

of the GitHub repositories as listed below:

• Package: thormang3_walking_module_msgs

Branch: walking_vis_upgrade

Description: contains the modified ROS messages for the visualization tool (cf. Section 5.3)

URL: https://github.com/thor-mang/ROBOTIS-THORMANG-msgs

• Package: thor_mang_gazebo

Branch: gazebo_fix_friction

Description: contains the .world files for simulating the robot on different terrains (stairs, slopes,

plateaus)

URL: https://github.com/thor-mang/thor_mang_simulation

• Package: thormang3_description

Branch: urdf_upgrade_housings (merged into kinetic_devel)

Description: added the 3D printed housings in the URDF files

Branch: gazebo_fix_friction

Description: added “PD gains in the feet” to improve the measured vertical forces in the simulation

(cf. Section 6.1)

Branch: urdf_fix_inertias

Description: set the real inertias of the components in the URDF files (cf. Section 6.1)

URL: https://github.com/thor-mang/ROBOTIS-THORMANG-Common

5.3 Visualization Tool

In order to better evaluate the performances of the software than just watching the robot walk, a 2D

Visualization Tool was implemented (as a ROS package). ROS publishers and messages were added

in the walking software in order to access all the important variables. In the 2D Visualization Tool, the

corresponding topics are subscribed and all the data are stored in a table form in files (using blank spaces

and line breaks), such that they can directly be opened as a matrix in Scilab (free software equivalent

to MATLAB)1. This way, all the signals can easily be plotted in 2D. Examples of these plots can be

seen throughout this thesis. The recording of the data can be started manually at every moment or

automatically when the robot starts walking. In the first mode the recording has to be stopped manually

too, while in the second mode it is automatically stopped when the current walking gait is finished. The

visualization tool as well as Scilab templates are also stored on the internal server of the SIM lab under:

https://git.sim.informatik.tu-darmstadt.de/ThorMangDev/ROBOTIS-THORMANG-MPC

1 See https://wiki.scilab.org/ and https://help.scilab.org/ for more information on Scilab.

46

https://git.sim.informatik.tu-darmstadt.de/ThorMangDev/ROBOTIS-THORMANG-MPC
https://github.com/thor-mang/ROBOTIS-THORMANG-msgs
https://github.com/thor-mang/thor_mang_simulation
https://github.com/thor-mang/ROBOTIS-THORMANG-Common
https://git.sim.informatik.tu-darmstadt.de/ThorMangDev/ROBOTIS-THORMANG-MPC
https://wiki.scilab.org/
https://help.scilab.org/

6 Tuning and Functional Testing

For safety reasons, the software is always tested in the simulation first as presented in Section 6.1.

However, many aspects of the implementation can only be tested on the real robot. In Section 6.2 the

functional tests performed with Robotis code are presented, while Section 6.4 focuses on the functional

tests with the improved implementation and on the tuning of its parameters. Most of the tests were

conducted on Robotis’ default walking gait, which corresponds to a straight forward motion on flat

ground with a step length of 0.1 m and a step duration of 1 s. Before the beginning of this thesis, the

robot was only able to walk with these values of the step parameters.

6.1 Open Loop Tests in Simulation

Since the physical models in the simulation software Gazebo are much simpler than the reality and since

they do not take the imperfections of the hardware into account, the robot can walk in open loop mode

in the simulation (i.e. without BC). This permits to test the new GPG independently, like for instance

the new Virtual Slope method or the new Swing Foot Trajectory and its collision avoidance feature. With

the new software, the robot can walk on uneven terrain like stairs or plateaus as shown in Section 7.

Because of hardware upgrades the URDF model had to be modified to better fit the reality. The new

housings designed to hold electrical components and the spacers to heighten the torso were added in

the URDF files with their measured weights. Moreover, some CoM positions and some weights of the

“links” of the robot had to be corrected. After these modifications the model returned a total mass of

about 40 kg, although the real mass corresponds to 48.5 kg. This discrepancy can be partially explained

by some electrical components like cables that were not weighted. The model was not further improved

since it was not the main focus of this thesis and it was not possible to disassemble the robot to verify

the weight of every link.

In the URDF files, all the inertias were arbitrarily set to the identity matrix. Robotis furnishes a table

of the real inertias of the links of the robot skeleton. The inertias of the new hardware (like the housings)

were determined from the CAD1 software Solid Edge. When setting the real inertias in the URDF files,

the gains of the simulated motors have to be tuned again. Indeed, the motors of the joints are simulated

as PID transfer functions in Gazebo. Since the real inertias are much smaller than the identity matrix,

the robot exploded in the simulation with the existing (very large) PID gains. On the contrary, too small

gains make the robot collapse on the spot. Tuning these gains is really time-consuming and was thus not

pursued, since it is not the aim of this thesis and it is not sure if it will noticeably improve the simulation

accuracy.

It was not possible to test the software in closed loop mode in the simulation (i.e. with BC), because

the simulated F/T sensors in Gazebo deliver wrong values. As found in Robotis repository, PD gains were

added in the URDF file to model the contact between the feet and the ground. This helped improve the

simulated measures of the vertical forces, nevertheless they are still very different from the real measures

and the other forces and torques did not become better (cf. Figure 6.1). A lot of other parameters can

be tuned in Gazebo to improve the physics, but were not studied here.

1 Computer-Aided Design

47

Even if the robot could not walk stably with the BC in the simulation for the mentioned reasons,

some primary aspects have been tested, that do not depend on the quality of the measures. These are

listed below:

• activation/deactivation of the Balance Controllers at the right time

• direction (i.e. sign) of the corrections

• continuity of the corrections

• safety features

Figure 6.1: Comparison between the measures by the simulated and by the real F/T sensors during a
default walking gait. The dashed lines correspond to the desired values.

48

6.2 Testing Former Code Performances

Because no documentation is provided with Robotis’ code, the aim of the body swap motion and of the

horizontal forces controllers were not clear (cf. Section 3.5.1 and Section 4.2.3). Thus, it was decided to

test their influence on a default walking gait. The results are presented in Section 6.2.1 and Section 6.2.2

respectively.

6.2.1 Center of Body Swap Motion

As explained in Section 3.5.1, Robotis implemented a vertical swap motion of the CoB as illustrated in

Figure 6.2. Its aim is unknown and the amplitude of this motion is fixed to an arbitrary value of 0.01 m.

Thus, it was decided to test Robotis’ default walking gait with and without swap motion on the real

robot. Johnny #5 could walk stably in both cases and all the recorded signals were very similar except

for the knee pitch position (cf. Figure 6.3). When the robot is standing on one foot, for instance on the

right foot between t = 4 s and t = 5 s, the knee pitch joint is not strong enough to reach the command

value generated without swap motion. On the other hand, the joint follows the desired trajectory in the

case of a swap motion, probably because the command value is larger. This may also be explained by the

generated vertical CoB (i.e. CoM) acceleration which reduces the efforts in the knees. For these reasons,

it was decided to keep this swap motion, though it should be further investigated how to automatically

adapt its amplitude to the gait and the terrain.

Figure 6.2: Robotis’ feet and CoB trajectories generated for a default walking gait with or without swap
motion of the CoB

49

In Robotis implementation, the origins of Srobot and Scob correspond to the generated CoB trajectory

with swap motion. In order to distinguish the VS motion generation from it, in the new implementation

the origin of Srobot was set at the CoB position without swap motion. The definition of Scob remains

unchanged. Thus, Srobot is always situated at a constant height above the feet which is meaningful

since the trajectories of the CoB and the feet are transformed into this frame for the BC. Moreover,

the horizontal position of Srobot was set to the middle of the feet. In Robotis’ code it was horizontally

moving with the CoB (as computed in the ZMP-PC). These modifications enable to have constant y and

z positions of the feet relative to Srobot as input for the BC when the robot is moving straightforward on

flat ground.

Figure 6.3: Position of the left and right knee pitch joints by a default walking gait with or without swap
motion on the real robot. The dashed lines correspond to the commands sent to the motors
and the continuous lines to the measured joint position.

6.2.2 Fx/Fy Controllers

As mentioned in Section 4.2.3, Robotis’ control of the horizontal forces was suppressed. This was vali-

dated by walking experiments. The aim of the implemented controllers is to reduce the error between the

desired and the measured horizontal forces by correcting the horizontal position of the feet. However,

as illustrated in Figure 6.4 the controllers have no noticeable influence on the course of the horizontal

forces and generally on all the recorded signals. Thus, these controllers have no influence on the stability

of the locomotion.

Because the stance foot cannot move in the horizontal directions, this control loop physically re-

sulted in a displacement of the CoB in the opposite direction. Thus, these controllers were replaced by a

ZMP control which corrects the horizontal position of the CoB directly (cf. Section 4.2.6).

50

Figure 6.4: Measured horizontal forces during a default walking gait with the real robot. The continuous
and dashed lines correspond to the experiment where the controllers of the horizontal forces
were activated and deactivated, respectively.

6.3 Tuning and Testing of the New Gait Pattern Generator

In this section, the tuning of the parameters of the new GPG and some functional tests are presented. In

order to test and compare it with the former implementation, Robotis’ BC is used. The first parameters

to be set are the calibration offsets of the legs as explained in Section 6.3.1. Then, the horizontal CoB

offsets are determined to center the CoM above the feet (cf. Section 6.3.2). The GPG also needs the

height of the CoM, which was experimentally determined as described in Section 6.3.3.

6.3.1 Calibration of the Legs

After bringing the robot in the initial pose (cf. Section 3.2) while hanging in the air, the joints of the legs

can be calibrated by setting offsets in order to ensure that they are in the right position. By this process,

the following characteristics should be checked:

• parallelism of the links (from the highest to the lowest)

• hip pitch joints placed vertically above the ankle pitch joints

• height of 0.630 m of the CoB above the floor

51

• zero roll and pitch angles of the upper body (using the IMU)

• inner edges of the feet slightly lower than the outer edges

Nevertheless, it is difficult and time consuming to set perfectly the roll and pitch angles to zero using the

calibration offsets. Thus, this was done approximatively and refined using CoB pitch and roll offsets that

were added to the existing x and y offsets (cf. Section 3.1 and Section 6.3.2). The feet are calibrated to

be slightly not parallel in order to diminish the risk that they land on the outer edge when walking.

This calibration process is very important in order to have an accurate IK. If for instance the right

leg is slightly longer than the other because of a wrong calibration, this offset error will create a much

harder landing impact on the right foot. Even if the robot now possesses a landing controller, such

an error should be avoided since it occurs during the whole locomotion and therefore has a negative

influence on the stability of the gait.

6.3.2 Centering of the Center of Mass above the Feet

The CoB horizontal offsets (cf. Section 3.1) are set such that the CoM is situated above the middle of the

feet. Since the CoB is actually at this position at the initial pose (cf. Section 3.2), it is moved slowly to

the offset position when switching to the walking mode.

The following procedure enables to tune the x and y offsets as well as the roll and pitch offsets (cf.

Section 6.3.1):

1. Bring the robot in the initial pose while hanging in the air.

2. Switch to the walking mode, deactivate the BC and put down the robot.

3. Increase/decrease the pitch offset until the IMU pitch value is zero.

4. Repeat with the roll offset.

5. Increase/decrease the x offset until the estimated ZMP in x direction is zero.

6. Repeat with the y offset.

7. Check again the IMU measurement and the estimated ZMP values and refine the tuning if necessary.

Similar horizontal offsets were used in [5] for carrying heavy objects which were shifting the CoM

of the robot. As shown in this reference, the procedure can be automated. Though, in our case it is not

necessary since it is done before and not during the walking.

These experimental offsets have the advantage to overcome calibration and modeling errors in

comparison to a method which would use the robot model to determine the position of the CoM relative

to the CoB. The former x and y offsets tuned in an unknown way by Robotis are summed up in Table E.6.

Actually, the CoB offsets should be tuned again after each new calibration, therefore no values of the

new ones are given.

52

6.3.3 Estimation of the Height of the Center of Mass

The gains of the ZMP-PC equations depend on the height Hcom of the CoM (cf. Section 2.2). In Robotis

code two sets of gains were computed for the two values 0.5 m and 0.6 m and the first set was used in

the ZMP-PC. Apparently, Robotis tuned manually Hcom by trial and error without looking for a physically

plausible value because Hcom = 0.5 m means that the CoM is situated between the knees and the hips

which is unlikely.

A way to compute the height of the CoM could have been to use the URDF files of Johnny #5. But

the total mass computed using the URDF is too different from the real mass of the robot (cf. Section 6.1),

so the position of the CoM does probably not correspond to the reality. For this reason, it was decided to

experimentally estimate Hcom.

θa

H�

H�

Ha px
x

z

Figure 6.5: Principle of the experimental estimation of the CoM height

The principle of the experiment is illustrated in Figure 6.5 and is based on the fact that the ZMP

corresponds to the projection of the CoM on the ground when the robot is standing. Moreover, the

assumption was made that a rotation of the feet has a marginal influence on the CoM position relative

to the CoB. The stages of the experiment are described below:

1. The Balance Control is deactivated.

2. The CoM is placed above the feet using the tuned offsets (cf. Section 6.3.2).

3. The pitch ankle joints are moved to an arbitrary angular position θa.

4. The position px of the ZMP in the x direction is estimated from the measures of the F/T sensors as

described in Section 4.2.5.

53

5. The height Hcom of the CoM is then computed using the equation

Hcom = Ha +
px

sinθa
  

H̃

(6.1)

with Ha the height of the ankle above the ground (Ha = 0.120 m).

6. The experiment is repeated for several values of θa.

The results are plotted in Figure 6.6. The ankles were moved from 0.05 rad to 0.13 rad because

for smaller values the x coordinate of the ZMP was smaller than the uncertainty on its measure (cf.

Section 6.4.2) and for greater values the robot tipped over. Due to the backlash in the joints and the

deformation of the rubber sole, the pitch angle of the robot is actually different from the angle of the

ankle pitch joints. Thus, θa was set to the absolute measures of the IMU in equation (6.1). We decided

to determine Hcom to the decimeter since a change of this parameter in the centimeter range leads to

a change of the CoM horizontal position in the millimeter range (it was observed by computing the

ZMP-PC for heights between 0.5 m and 0.8m). Moreover, the accuracy of the estimated ZMP does not

permit to obtain a more precise value (cf. Section 6.4.2). Therefore, based on Figure 6.6 the result of

the experiment is

Hcom ≈ 0.7 m (6.2)

which approximatively corresponds to the IMU height and seems physically plausible since it is just

underneath the batteries.

Figure 6.6: Computed values of Hcom relative to the pitch angle of the robot measured by the IMU and
their mean value

In Figure 6.8 the CoM trajectories generated respectively with Hcom = 0.5 m (Robotis value) and

Hcom = 0.7 m (new value) are illustrated. In the second case, the CoM is moving earlier in the forward

direction and the minimal distance between the CoM and the middle of the stance foot in the transverse

direction is bigger. Indeed, the new preview gain takes lower values for the near future and greater

values later, as illustrated in Figure 6.7.

54

Figure 6.7: Preview Gain of the ZMP-PC depending on the height Hcom

Figure 6.8: Trajectories of the CoM generated by the ZMP-PC depending on its height Hcom

55

Another way to determine the height of the CoM could have been to lay the robot on a board

balancing on a cylinder, as the SIM lab did in the past. However, the proposed method is easier to

reproduce, since no additional material is needed, and can therefore be rapidly done after a significant

hardware modification.

Real Test

Robotis’ GPGs with Hcom = 0.5 m and the new one with Hcom = 0.7 m were tested and compared on

the real robot for a default walking gait. In both cases Robotis’ BC was activated and the robot walked

stably. As illustrated in Figure 6.9, in the second case the estimated ZMP stays nearer to the middle of

the foot, reducing the risk to tip over sideways which was the biggest issue so far (cf. Section 4.1.5).

Nevertheless, during the DSP the rear foot is shortly landing again (for instance at t ≈ 3.7 s) because the

swinging foot landed earlier than planned, making the robot slightly oscillating back and forth during the

DSP. This can be fixed by activating and tuning the new landing and ZMP control loops (cf. Section 4.2.3

and Section 4.2.6) and is less critical for the stability than the ZMP moving to the outer edge of the stance

foot as with Robotis’ GPG (cf. Figure 6.9). Moreover, in [28, 25] the same phenomenon of re-landing

appears by testing the GPG.

Figure 6.9: Estimated ZMP by walking on flat ground for different values of Hcom. The continuous line
corresponds to a walk with Robotis GPG (Hcom = 0.5 m) and Robotis BC. The dashed line
corresponds to a walk with the new GPG (Hcom = 0.7 m) and Robotis BC.

56

6.4 Tuning and Testing of the New Balance Control

For testing the improved BC, the new GPG with the tuned parameters is used. Before verifying the

validity of the ZMP estimation (cf. Section 6.4.2), the existing calibration process of the F/T sensors has

been studied (cf. Section 6.4.1). However, the most complex work with the BC is the tuning of all the

gains of the implemented controllers (cf. Section 6.4.3).

6.4.1 Calibration of the F/T Sensors

The calibration implemented by Robotis works as follows. Measures of the F/T sensors when the robot

is hanging in the air (W̃ air
i

) and when the robot is standing on the ground (W̃ g r ound
i

) are recorded and

used to scale the measures of the sensors. The aim of the calibration is that F scaled
z,l + F scaled

z,r is equal to

the total weight of the robot when it is on the ground and to zero when it is in the air. The implemented

scaling equation is

W scaled
i = αscale · (W r aw

i − W̃ air
i), i ∈ {l, r} (6.3)

with

W k
i =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

F k
x ,i

F k
y,i

F k
z,i

τk
x ,i

τk
y,i

τk
z,i

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(6.4)

and

αscale =
mtotal · g

F̃ ground
z,l + F̃ ground

z,r − F̃ air
z,l − F̃ air

z,l

(6.5)

where mtotal is the total mass of the robot. Robotis computed this mass using a hard coded model of the

robot (not even the URDF) which delivers a mass of 42.533 kg. By weighting the real robot a mass of

48.5 kg is obtained, so the variable in the code is set to this value.

Remark

In all this thesis every force or torque variable named with the upper word “meas” (e.g. F meas
z)

corresponds to the scaled and filtered value.

Further Improvements

Instead of using a single scaling factor, each sensor and each spatial direction of the measures should

be independently calibrated. With the current implementation, when the robot is standing on one foot,

the scaled vertical force F scaled
z,i is not necessarily equal to the total weight of the robot because of this

common scaling factor.

57

It is though very complex to perfectly calibrate F/T sensors, while they are mounted on the robot,

because the latter is not fixed to the ground and cannot stand on one foot without BC. Since this is not

the focus of this thesis, the existing calibration has been kept unchanged.

Problems with Analog-to-Digital Converter

(a) Total recording

(b) Zooms on highly disturbed measures (in “torque
on” mode)

(c) Zooms on undisturbed measures (in “torque off”
mode)

Figure 6.10: Force in z direction measured by the F/T sensors when the robot is hanging in the air (com-
parison between “torque on” and “torque off” mode)

In “torque off” mode (i.e. the communication with the motors is powered but not the motors

themselves), the measures of the sensors have a high quality (almost no noise). On the other hand, in

“torque on” mode (i.e. the motors are turned on), perturbations appears and have become worse with

the time. Typical (filtered) measures are illustrated in Figure 6.10 in both modes. Zooms were made on

the time axis, so the period is of the same order of magnitude as for a walking gait.

In “torque on” mode the error on the measures can amount up to 50 N during almost 1 s, which cor-

responds to the default duration of a step. Therefore, these discrepancies in the measures can be neither

58

filtered nor neglected. Moreover, reducing the cut-off frequency of the low-pass filters (cf. Section 4.1.1)

would delay the measures and slow the BC. This is especially critical during the landing phase. These

discrepancies between the two modes are due to the analog-to-digital (A/D) converters in the servomo-

tors of the ankle joints, which are disturbed by the current consumed by the motors. Additionally, the

mean value of the signals sometimes suddenly changed without any noticeable reason.

A parallel project was launched to add external converters, but was not finished before the end of

this thesis. Later, it was discovered that the smaller and regular oscillations are due to the capacitors of

the power supply. By removing them, these oscillations disappeared but the other perturbations remain

(like the ones in Figure 6.10b).

6.4.2 Testing the Estimation of the ZMP Position

As already mentioned in Section 2.1, when the robot is standing, the real ZMP and the projected CoM

coincide. This property is used to test the accuracy of the ZMP estimation. An experimentation in the

simulation was not possible, since the F/T measures were wrong (cf. Section 6.1). Indeed, the estimated

ZMP was often situated meters away from the robot, although it was standing.

For the real tests, the CoM is first centered above the feet as described in Section 6.3.2 and then

horizontally moved by changing the CoB offsets. In Figure 6.11 and Figure 6.12, the following tests are

illustrated:

• Test 1: CoM displacements in x direction (forwards and backwards)

• Test 2: CoM displacements in y direction (to the left and to the right)

• Test 3: CoM displacements in x+ direction until the robot falls over

• Test 4: CoM displacements in y- direction (i.e. to the right) until the robot falls over

As shown in these figures, the estimated ZMP follows the curve of the commanded position of the CoM

as expected. In test 3, the robot fell over at t ≈ 70 s and had to be caught, creating additional forces on

the F/T sensors, which explains the peak in the ZMP estimation in Figure 6.12. It was not possible to

complete test 4, since the right knee pitch servomotor automatically turned off at t ≈ 50 s because of the

torque (i.e. current) limitation. Indeed, the robot was almost standing on one single foot and the efforts

in the joint were too high for the motor. This problem was already known in the SIM lab and described

in the thesis of Stein [36]. The same phenomenon occurred by trying to move the CoM backwards until

the robot falls over.

Tests 1 and 3 were conducted first. When the robot fell over, it had to be lifted in the air before

putting in down again. Through this process, the joints take a slightly different position every time

because of the stress and the backlash. Because of the high position of the CoM, this has certainly an

influence on its horizontal position and could explain why the estimated ZMP is not situated at the same

x coordinate at the beginning of tests 2 and 4. However, it is not disturbing, since the CoM was only

moved in the y direction. The oscillations in x direction in Figure 6.11 are due to the oscillations of

the robot itself, especially in x direction because of the backlash in the joints and the brutal stop in the

command of the CoB position.

59

After the CoM is stabilized, the error between the curves of the estimated ZMP and the desired

CoM is generally still about 5 mm and about 1 cm near the limits of the support polygon. This can be

explained with the following facts:

• The CoM is approximated by the position of the CoB and offset values, so the dashed lines in

Figure 6.11 and Figure 6.12 do not exactly correspond to the real position of the CoM.

• The model of the robot used in the IK is not perfect and this also adds errors in the positioning of

the CoM.

• The imprecision of the calibration of the F/T sensors (cf. Section 6.4.1) and the errors in the

measures of the F/T sensors (cf. Section 6.4.1) are duplicated in the estimated ZMP, since the

computation is based on several measures (cf. equations (6.8) and (6.9)).

• The deformation of the feet rubber sole (when the ZMP is near an edge of the foot) affects the

measurements and the estimation.

Moreover, the estimated ZMP has more noise in y direction because in the initial pose the positions of

the left and right feet relative to the robot frame verify

x robot→l f = x robot→r f (= 0) (6.6)

yrobot→l f = −yrobot→r f (= 0.093 m) (6.7)

which transforms equation (D.1) into

pest
x = p̂est

x = −
τmeas

y,l +τ
meas
y,r

F meas
z,l + F meas

z,r

(6.8)

pest
y = p̂est

y =
yrobot→l f · (F meas

z,l − F meas
z,r) +τ

meas
x ,l +τ

meas
x ,r

F meas
z,l + F meas

z,r

(6.9)

Therefore, the noise of the F/T measures is added two more times in the y direction as in the x direction.

The computation of the estimated ZMP on a VS has also been tested on the real robot. The VS

grade was arbitrarily set to 50%. The robot was held by the front handles while standing in the initial

pose and pushed in the x and y directions to manually move the ZMP as illustrated in Figure 6.13. The

ZMP sometimes goes outside the support polygon because the robot turned around the edges of the

feet but did not fall over since it has been continuously held. The 2D representation in the x-z plane in

Figure 6.14 confirms that the estimated ZMP is moving on the VS.

To conclude, it was shown in this section that the calculation of the estimated ZMP is correct.

Nevertheless, the precision should be improved for control purposes. This can be done by removing the

perturbations in the measured F/T signals as explained in Section 6.4.1.

60

Figure 6.11: Tests 1 and 2 of the ZMP estimation

Figure 6.12: Tests 3 and 4 of the ZMP estimation

61

Figure 6.13: Position of the estimated ZMP on a VS of 50% relative to the time during a push experiment

Figure 6.14: 2D representations of the position of the estimated ZMP on a VS of 50% relative to the time
during a push experiment

6.4.3 Tuning the Gains of the Controllers

As already explained in Section 2.3.2, there is no general method for tuning the gains of the BC. When

no model (local or global) is available, they are experimentally determined by trial and error, as done

by Robotis for THORMANG3 (but the gains had to be refined on Johnny #5). For the tuning a long

experience with the robot is necessary to “feel” how to modify the gain to improve the biped locomotion.

The main goal of the 2D visualization tool (presented in Section 5.3) is to ease this process by enabling

a better evaluation of the global performances of the robot and a comparison of the signals of different

experiments. This tool was already useful for tuning and validating the parameters of the GPG (cf.

Section 6.3).

62

Ziegler et al. [37] were among the firsts to propose heuristic rules to tune the gains of a PID con-

troller. It works as follows: The I and D gains (ki and kd) are set to zero and the P gain (kp) is increased

until the system oscillates. The period Pu is measured and the corresponding value of the gain is named

Su. The heuristic Ziegler–Nichols method sets the gains to the following values

kp = 0.6 · Su (6.10)

ki = kp
2
Pu

(6.11)

kd = kp
Pu

8
(6.12)

Other similar heuristic methods have been found in the literature, but none for PD controllers. In any

case, such a method is not appropriate for a humanoid robot, because deliberately creating oscillations

can be very dangerous, especially for the robot itself.

The manual tuning of the gains is a very long and complex process, thus it was not carried out

during this thesis. In fact, it is much more difficult to tune the gains of the new controllers than refining

gains that were already tuned like it was done on Johnny #5 based on the values fixed by Robotis for

THORMANG3. This is principally due to the fact that the controllers cannot be tested in the simulation as

explained in Section 6.1. Indeed, a working simulation could enable to test tuning methods on the virtual

robot. Even if the gains must be tuned again on the real robot because of the modeling discrepancies,

this would permit to speed up the process and make it safer.

The difficulty in determining the P and D gains is based on the fact that these gains cannot be

adjusted independently. Indeed, one idea could be to increase the gain P until a quick response with

little or no overshooting is achieved, then increase the gain D to further improve the reactivity of the

response. But this would not lead to the best possible performances. In fact, with the combination of

the P and D gains (actually two P gains as explained in Section 4.1.2), Robotis’ IMU control is stable, but

as experimentally tested on Johnny #5, it is instable when the D gain is set to zero (the ankles quickly

oscillated during the test). This means that the proposed procedure would not have lead to the gains

found by Robotis. Generally, higher gains permit to make the system quicker and reduce the steady error.

Nevertheless, too high gains increase the chance for the system to become unstable. A good procedure is

probably to set the P gain, then the D gain (as proposed previously), and then try to increase both gains

in parallel and gradually.

Although the BC is designed as decoupled controllers, they have an influence on each other. Thus,

it is difficult to tune them separately. For instance, the terrain adaptation control and the IMU control

act both on the correction of the rotation of the foot. This can partially be overcome by designing

test experiments that target one specific control loop. Some propositions are listed below (the robot is

standing in the initial pose):

• Pushing on the robot to test the IMU and the ZMP control loops

• Putting the robot down on a small slope to test the IMU control loop

• Putting the robot down on locally uneven terrain to test the terrain adaptation controllers (for

instance placing a small plate under one foot)

63

Once the robot can stand stably, the landing controllers could be tested by walking on place such that

the feet are only moving vertically. The gains could then be refined on a default walking gait and later

by walking on uneven terrain.

64

7 Evaluation

In this section, the implemented concepts are tested on different walking scenarios. As explained in

Section 6.4.3, the tuning of the gains could not be achieved in this thesis, so the new GPG was tested

with Robotis’ BC on the real robot for a default walking gait (cf. Section 7.2). Before starting a walking

experiment, the robot is prepared as detailed in Section 7.1. For walking on uneven terrain like stairs,

the footstep length must be increased. With Robotis’ BC and fixed gait parameters, the robot was not

able to make these big steps (cf. Section 7.3). Thus, the walking on stairs has only be tested in the

simulation as presented in Section 7.4. This permitted to validate the proposed VS method and Swing

Foot Trajectory Generator.

7.1 Before Walking

In Johnny #5’s software a supervisor Graphical User Interface (GUI) is provided, which enables to switch

between different modes. The robot is moved to the initial pose by selecting the stand_prep mode in the

GUI. The stand mode permits to start the rotation of the scanning laser and the walk mode launches the

walking software.

Before each walking experiment, the condition of the robot should be checked. The different stages

of this process are listed below:

1. Calibration check of the joints of the legs in stand_prep mode as described in Section 6.3.1 us-

ing the ROS tool dynamic_reconfigure1. The joints often need to be re-calibrated after a walking

experiment. The causes are not clear, but it is possibly due to the backlash in the joints.

2. Check of the soldering of the F/T boards in stand mode. The soldering of the cables on the boards

are very fragile. Because of the vibrations in the feet during walking, cracks appear in the soldering,

which can strongly disturb the measurements. To check the soldering, the cables are gently moved,

while plotting the measures (for instance using the ROS tool rqt_multiplot2). If the curves suddenly

oscillate with a large amplitude, the plugs must be soldered again.

3. Calibration check of the F/T sensors in stand mode as described in Section 6.4.1. Because of the

errors in the vertical forces measurement (cf. Figure 6.10), it is difficult to calibrate the F/T sensors.

In fact, when doing the calibration twice in a row, the difference between the first and the second

scaled signal of the vertical forces measurement can be up to 50 N (cf. Section 6.4.1).

4. Check of CoB offsets in walk mode as described in Section 6.3.2. The BC must be deactivated for

the calibration and the 2D visualization tool is used to check the position of the ZMP.

7.2 Default Walking Gait on Flat Ground

Robotis’ default walking gait correspond to a straightforward motion on flat ground with a step length

∆Xstep = 0.1 m and a step duration Tstep = 1 s. As already mentioned, the real tests are made with

1 The dynamic_reconfigure tool permits to dynamically change predefined software parameters. See http://wiki.ros.
org/dynamic_reconfigure for more information.

2 http://wiki.ros.org/rqt_multiplot

65

http://wiki.ros.org/dynamic_reconfigure
http://wiki.ros.org/dynamic_reconfigure
http://wiki.ros.org/rqt_multiplot

Robotis’ BC. Snapshots of the walking with the new GPG can be found in Appendix F Figure F.1. The

results obtained with the former and the new GPG are already presented in Section 6.3.3. In brief, the

margin between the estimated ZMP and the outer edges of the feet is increased, making the motion in

the y direction more stable. Nevertheless, during the DSP the feet do not always remain in contact with

the ground. This can certainly be overcome by tuning the proposed landing and ZMP control loops.

7.3 Big Steps

For walking on uneven terrain like stairs, the robot needs to be capable of making steps of a length

bigger than the dimension of its feet (l f oot ≈ 0.22 m for THORMANG3). Thus, it was decided to test a

walking gait with a step length of ∆Xstep = 0.25 m in order to have some margin. In Robotis’ code, this

parameter can be changed by the footstep planner, but not the step duration which is fixed to Tstep = 1 s.

However, for big steps this duration should be increased, otherwise the foot is moving too fast, i.e. the

joint velocities are too high. On the other hand, if the step duration is too long, the ZMP may go out of

the support polygon (making the robot falling over) because the CoM acceleration may be too small to

compensate its position outside the support polygon (cf. ZMP equation (2.3)).

The step duration should be computed by the GPG depending on the step distance. This could

be done by automatically checking the velocities of the Swing Foot Trajectories by the generation and

increasing the step duration if they are too high. This means that the range of acceptable velocities must

be determined. Alternatively, a relation between the step duration and length may be found. Moreover,

a walking gait with bigger steps needs a more robust BC because the LIPM makes larger angles with the

vertical producing higher torques in the ankle joints. These propositions could not be investigated in this

thesis for the reasons explained in Section 6.4.3, but finding a solution for taking big steps certainly is

the next objective in the development of the walking software.

Because the real robot can not make big steps, it was not possible to test the new implementation on

stairs or slopes. However, in the simulation the robot could make big steps with a duration of Tstep = 1 s,

since it can walk without BC and the velocities and acceleration are not limited. Thus, as presented in

the next sections, the new GPG has been tested on stairs and slopes in the simulation.

7.4 Stairs

As in [19, 23] the stairs were chosen as test case for walking on uneven terrain in the simulation. In

fact, it enables to test the implemented VS method and collision avoidance at the same time. With the

new GPG the robot can walk up stairs of a height of 5 cm in the simulation as illustrated in Appendix F

Figure F.3. This was not possible with Robotis’ GPG because the CoM could only move horizontally (no

vertical adaptation to the terrain, cf. Section 3.5) and nothing was implemented to avoid collisions. In

the new code, the VS is automatically computed by the GPG and the bypass points are manually passed

because they are not implemented in the footstep planner yet. This collision avoidance works as already

shown in Section 3.4.2 and illustrated in Figure 7.2. The CoB and feet trajectories generated by the

former and the new GPG for stairs of 5 cm are plotted in Figure 7.1. In the second case, the swap motion

of the CoB was deactivated to better visualize the implemented motion on the VS. In fact, as illustrated

in the lower plot of Figure 7.1, the CoB moves in a plane parallel to the stairs with the new GPG. In the

upper plot, its trajectory is not linear with respect to the time since the x position of the CoB does not

66

evolve linearly with respect to the time. With the former implementation, only the feet are going up,

making the CoB loosing height above the feet which is an undesirable effect.

Figure 7.1: CoB and feet trajectories generated by the GPG for walking on stairs of 5 cm (without bypass
points). The dashed lines correspond to Robotis’ GPG and the continuous lines to the new
GPG without swap motion of the CoB.

For the real robot, it would probably be better to lean the upper body forwards in order to reduce

the torques in the knees when the feet are on different stairs as in first snapshot of Figure 7.2. This may

prevent them from shutting down because of the torque limitation (cf. Section 6.4.2). Nevertheless,

THORMANG3 could probably not walk up stairs designed for humans (The standard height is about

17 cm.1 because the knees are already overstretched on stairs of 10 cm (cf. Figure 7.2). A solution

could be to bring the CoB down, but this would increase the torques in the knees because they are more

bent. Moreover, the simulated stairs have a length of 25 cm, against 28 cm for standard stairs1. This

means that the steps should be even bigger which is not possible with the already overstretched knees.

A solution could be to make an additional small step (of 3 cm) on each stair.

1 http://www.spreng-gmbh.de/documents/spreng/Plakat_Treppenmasze.pdf

67

http://www.spreng-gmbh.de/documents/spreng/Plakat_Treppenmasze.pdf

The new GPG was also tested on a plateau (illustrated in Figure 7.4) to test the VS transition

between flat ground and stairs. In Figure 7.3 the generated CoB and feet trajectories are plotted (again,

without swap motion to visualize the VS). The robot was able to walk on the plateau in the simulation.

Figure 7.2: Overstretched knees on a stair of 10 cm in the simulation

Figure 7.3: CoB and feet trajectories generated by the new GPG (without swap motion of the CoB) for
walking on a plateau of 5 cm

68

Figure 7.4: Test case walking on a plateau of 5 cm

69

8 Conclusion

Section 8.1 resumes the achievements of this thesis. Suggestions for improvement and development in

the short and long term are proposed in Section 8.2,.

8.1 Achievements

Before the beginning of this thesis the humanoid robot Johnny #5 of the SIM lab was able to dynamically

walk on flat ground, however not on uneven terrain. In a former thesis for the SIM lab, it has been tried

to use the Drake toolbox developed by the MIT to improve its legged locomotion. Thus, in the present

thesis it was first investigated why the method has led to unsuccessful results back then. The principal

reason why it was then decided not to continue with Drake is that the toolbox was designed for robots

disposing of torque control at the joint level while Johnny #5 is position-controlled.

Thus, the existing software has been studied and it turned out that it was based on the well-spread

method of ZMP Preview Control. However, only the basic version was implemented, which do not

enable a vertical motion of the CoM. This explains why Johnny #5 was able to walk on flat ground

only. ZMP control concepts to extend this method were then investigated to enable robust walking

motions on uneven terrain like stairs. The literature research was divided into two parts based on the

two main blocks of the walking software: the Gait Pattern Generator, which is responsible for generating

the desired trajectories of the CoM and the feet, and the Balance Control, which is responsible for

maintaining the dynamic balance of the robot by making it follow the desired trajectories.

In this work, the ZMP Preview Control implemented in the GPG was extended with a unique method

using Virtual Slopes to generate a vertical motion of the CoM adapted to the terrain. Moreover, a

Swing Foot Trajectory was implemented, which disposes of the two further features: vertical landing and

collision avoidance using the knowledge of the terrain (furnished by the already implemented Footstep

Planner). These extensions led to successful results on stairs in the simulation.

On the real robot however, a robust ZMP Balance Control is additionally required to make the

robot stably walk on uneven terrain. A new combination of state of the art balance controllers was

implemented to overcome the problems encountered with the former BC: poor stabilization of the roll

inclination of the robot and large impact at the landing of the swinging foot. To remedy this, a ZMP

controller based on the computation of the virtual ZMP on the Virtual Slope and a landing controller

were proposed. In order to test the new software on the real robot with as little risk as possible, safety

features were implemented, which aim to stop the motion when failures are detected. For helping assess

the performances of the implementation and tune the gains of the controllers, a 2D Visualization Tool

was implemented that enables to easily plot all the important signals.

8.2 Outlook

In this section, improvements on the short and long term of the software developed in this thesis are

proposed. In the continuity of this work, the GPG parameters should be tuned to enable the real robot

making bigger steps on flat ground. This is a necessary stage before developing the walking on uneven

terrain like stairs. Moreover, the gains of the new Balance Controllers have to be tuned, which may be

a theme for a future thesis in the SIM lab. To ease and accelerate this complex process, another axis of

71

work would be to improve the simulation, such that the BC could be tested on the simulated robot first.

This would enable to test tuning methods and reduce the risks of damages on the real robot. To improve

the simulation, the robot model and the simulator physics parameters should be tuned to better fit the

reality.

On the long term, some other state of the art extensions could be considered. Considering the GPG,

the Three-Mass Model [25] could be implemented and compared with the actual LIPM by assessing its

effect on the robustness of the locomotion. Moreover, an additional swinging movement of the arms

could be added to improve the balance [11, p. 90]. When the foot is not entirely in contact with the

ground, the ZMP reference should be adapted to be in the middle of the real support polygon (which

is computed by the Footstep Planner) and not of the foot sole. The Swing Foot Trajectory could also be

optimized regarding to the speed and torques at the joint level [38].

Considering the BC, the precision of the model for the IK should be tested and improved if necessary.

Since the controllers of the horizontal torques and the controllers of the upper body inclination both

correct the rotation of the feet, their coupled influence could be considered by combining them in a

cascade control loop [34]. To reduce the landing impact even more, the gains of the position controllers

of the joints could be reduced at the landing detection [11, p. 94]. When the perturbations are too

strong, the BC cannot stabilize the robot any longer and a method of capture step is supposed to be used

to avoid a fall [5, 6]. While the capture steps proved to be efficient on flat ground, this is a real challenge

on uneven terrain.

72

A Torque Control using Drake (MIT)

The Robot Locomotion Group at the MIT1 Computer Science and Artificial Intelligence Lab (CSAIL) de-

veloped a project named “Drake” [39], whose aim is to provide tools for “planning, control and analysis”

of nonlinear dynamical systems. They have especially developed algorithms to control the locomotion of

Atlas, the humanoid robot of Boston Dynamics [40].

Figure A.1: Boston Dynamics Atlas humanoid robot (former and new version) [photo credits Boston Dy-
namics]

In a master thesis for the SIM lab [36], Drake was successfully used as whole-body motion planning

for manipulation tasks (i.e. without control). Later, Reimold [5] has tried to make THORMANG3 walk

on uneven terrain with the help of the MIT algorithms. The optimization for the control of a biped

locomotion implemented in Drake returns torque and velocity commands, which are inputs of the joint

controllers of Atlas [40]. Since the DYNAMIXEL controllers take a position as input, the idea of Reimold

was to only use the velocity command and integrate it to obtain the position [5]. This method did not

work, probably because the optimization is made respectively to the torques and not to the positions of

the motors. Indeed, it can be set as “torque only control” or as “torque and velocity control”. In the first

case, the algorithm makes the legs compliant and in the second case, the performances of the position

tracking are improved at the cost of the compliance [5].

The MIT has successfully used a similar idea for controlling the arms of Atlas2 but has never tried

on the legs. Position-only control may have worked for the arms because they are freely moving, i.e.

without external forces applied on them (except the gravitation forces). On the contrary the kinematics

chain of legs on the ground is closed. Hence, the contact forces and torques between the feet and the

ground have a large influence on the behavior on the system and certainly have an influence on the

optimized torques. Moreover, when walking, the legs need some compliance at the landing phase, which

is not possible without considering the torque control part of the algorithm.

Del Prete et al. confirmed this supposition that the Drake method cannot be directly applied to robots

like THORMANG3, since they wrote: “Torque control is a necessary requirement for the implementation

of rigid-body inverse-dynamics control” [9, p. 2]. Hence, they have developed a method to use algorithm

based on inverse dynamics (like Drake) on humanoid robots having position controlled servomotors and

have tested it on the platform HRP-2 [41]. In this method, a good model of the servomotors is necessary

1 Massachusetts Institute of Technology
2 cf. Reimold’s issue on GitHub: https://github.com/RobotLocomotion/drake/issues/1233

73

https://github.com/RobotLocomotion/drake/issues/1233

to derive the position commands and estimate the torques in the joints. In her master thesis for the

SIM lab, Schumacher [42] however showed that it is very complex to establish a precise model of the

DYNAMIXEL PROs and thus to estimate the load torque.

Another solution to use Drake could have been to set the DYNAMIXEL PROs to current control

(which is almost torque control). According to the online documentation of the DYNAMIXEL PROs [43],

the motors are meant to be used in position or velocity control mode, but they can also be set in current

control mode (cf. Figure A.2). This last mode was investigated by Schumacher and she has showed that

the dynamic performances are low [42, p. 75], making this mode inadequate for THORMANG3. For

these reasons, it has been decided not to use Drake in this thesis.

(a) Velocity control mode

(b) Position control mode

Figure A.2: Control modes of DYNAMIXEL PRO servomotors [image credits Robotis [43]]

74

B Mathematical Proofs of Monotonic Trajectories

Lemma 1. A fifth order polynomial function

x(t) = a0 · t5 + a1 · t4 + a2 · t3 + a3 · t2 + a4 · t + a5, t ∈ [t0, t1] (B.1)

with the six boundary conditions

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x(t0) = x0 (B.2a)

ẋ(t0) = 0 (B.2b)

ẍ(t0) = 0 (B.2c)

x(t1) = x1 ̸= x0 (B.2d)

ẋ(t1) = 0 (B.2e)

ẍ(t1) = 0 (B.2f)

is strictly monotone on the interval]t0, t1[.

Proof. Without loss of generality we assume x0 = 0, x1 = ∆X > 0, t0 = 0 and t1 = ∆T > 0 and so we

will prove that the function x is strictly increasing on]0,∆T[, i.e. that ẋ(t)> 0,∀t ∈]0,∆T[.

The boundary conditions (B.2a), (B.2b) and (B.2c) trivially lead to a5 = a4 = a3 = 0. The remaining

boundary conditions (B.2d), (B.2e) and (B.2f) can be rewritten as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a0 ·∆T 5 + a1 ·∆T 4 + a2 ·∆T 3 =∆X

5a0 ·∆T 4 + 4a1 ·∆T 3 + 3a2 ·∆T 2 = 0

20a0 ·∆T 3 + 12a1 ·∆T 2 + 6a2 ·∆T = 0

(B.3)

Using the transformation
⎧

⎪

⎪

⎨

⎪

⎪

⎩

α= a0·∆T5

∆X

β = a1·∆T4

∆X

γ= a2·∆T3

∆X

(B.4)

the system (B.3) becomes
⎧

⎪

⎪

⎨

⎪

⎪

⎩

α+ β + γ= 1

5α+ 4β + 3γ= 0

20α+ 12β + 6γ= 0

(B.5)

75

and its solution is
⎧

⎪

⎪

⎨

⎪

⎪

⎩

α= 6

β = −15

γ= 10

(B.6)

For all t ∈]0,∆T[we have:

ẋ(t)> 0

⇐⇒ 5a0 · t4 + 4a1 · t3 + 3a2 · t2 > 0

⇐⇒ 5a0 · t2 + 4a1 · t + 3a2 > 0

⇐⇒ 5a0 · t2 ·
∆T 5

∆X
+ 4a1 · t ·

∆T 5

∆X
+ 3a2 ·

∆T 5

∆X
> 0

⇐⇒ 5α · t2 + 4β∆T · t + 3γ∆T 2 > 0

⇐⇒ 30 · t2 − 60∆T · t + 30∆T 2 > 0

⇐⇒ t2 − 2∆T · t +∆T 2 > 0

⇐⇒ (t −∆T)2 > 0

Lemma 2. A fifth order polynomial function

x(t) = a0 · t5 + a1 · t4 + a2 · t3 + a3 · t2 + a4 · t + a5, t ∈ [t0, t1] (B.7)

has the six boundary conditions

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x(t0) = x0 (B.8a)

ẋ(t0) = 0 (B.8b)

ẍ(t0) = 0 (B.8c)

x(t1) = x1 ̸= x0 (B.8d)

ẋ(t1) = v1 ̸= 0 (B.8e)

ẍ(t1) = a1 ̸= 0 (B.8f)

such that (x1 − x0), v1 and (−a1) have the same sign.

There exists ∆T0 > 0 such that if (t1 − t0) < ∆T0 the function x is strictly monotone on the interval

]t0, t1[.

Proof. Without loss of generality we assume x0 = 0, x1 =∆X > 0, ẋ1 = V > 0, ẍ1 = −A< 0, t0 = 0 and

t1 =∆T > 0 and so we will prove that ∃∆T0 > 0,∀∆T <∆T0,∀t ∈]0,∆T[, ẋ(t)> 0.

76

The boundary conditions (B.2a), (B.2b) and (B.2c) trivially lead to a5 = a4 = a3 = 0. The remaining

boundary conditions (B.2d), (B.2e) and (B.2f) can be rewritten as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a0 ·∆T 5 + a1 ·∆T 4 + a2 ·∆T 3 =∆X

5a0 ·∆T 4 + 4a1 ·∆T 3 + 3a2 ·∆T 2 = V

20a0 ·∆T 3 + 12a1 ·∆T 2 + 6a2 ·∆T = −A

(B.9)

Using the transformations
⎧

⎪

⎪

⎨

⎪

⎪

⎩

α= a0 ·∆T 5

β = a1 ·∆T 4

γ= a2 ·∆T 3

(B.10)

and
⎧

⎪

⎪

⎨

⎪

⎪

⎩

c1 =∆X

c2 = V∆T

c3 = −A∆T 2

(B.11)

the system (B.9) becomes
⎧

⎪

⎪

⎨

⎪

⎪

⎩

α+ β + γ= c1

5α+ 4β + 3γ= c2

20α+ 12β + 6γ= c3

(B.12)

and its solution is
⎧

⎪

⎪

⎨

⎪

⎪

⎩

α= 6c1 − 3c2 +
1
2 c3

β = −15c1 + 7c2 − c3

γ= 10c1 − 4c2 +
1
2 c3

(B.13)

Finally we obtain
⎧

⎪

⎪

⎨

⎪

⎪

⎩

a0 =
1
∆T5 (6c1 − 3c2 +

1
2 c3)

a1 =
1
∆T4 (−15c1 + 7c2 − c3)

a2 =
1
∆T3 (10c1 − 4c2 +

1
2 c3)

(B.14)

For all t ∈]0,∆T[we have:

ẋ(t)> 0

⇐⇒ 5a0 · t4 + 4a1 · t3 + 3a2 · t2 > 0

⇐⇒ 5a0 · t2 + 4a1 · t + 3a2 > 0 (B.15)

77

The discriminant of the left side of inequality (B.15) is:

Disct(ẋ) = 16a2
1 − 60a0a2 (B.16)

=
1
∆T 8

(64V 2∆T 2 + A2∆T 4 − 120V∆X∆T − 14AV∆T 3) (B.17)

Thus for ∆T → 0

Disct(ẋ)∼ −120
V∆X
∆T 7

(B.18)

which implies

∃∆T0 > 0,∀∆T <∆T0, Disct(ẋ)< 0. (B.19)

Thus for ∆T <∆T0 the sign of ẋ(t) is constant on]0,∆T] and corresponds to the sign of ẋ(∆T) which

is positive. Therefore if 0<∆T <∆T0, the function ẋ is strictly increasing on]0,∆T].

Application of Lemma 2 to the Swing Foot Trajectory

For the phase No. 3 of the Swing Foot Trajectory in z direction the coefficients a0, a1 and a2 are

computed using the correspondence:

∆T ← (tappro − tmax ,end)

∆X ← (zappro − zmax)

V ← Vmax

−A← Aappro

In order to obtain a strictly decreasing trajectory on]tmax ,end , tappro] the parameter tmax ,end is increased

(i.e. (tappro − tmax ,end) is decreased) until one of the following cases is true:

(i) 16a2
1 − 60a0a2 < 0

(ii) 16a2
1 − 60a0a2 ≥ 0, a0 < 0 and max(t−, t+)≤ 0

(iii) 16a2
1 − 60a0a2 ≥ 0, a0 < 0 and min(t−, t+)>∆T

(iv) 16a2
1 − 60a0a2 > 0, a0 > 0, min(t−, t+)≤ 0 and max(t−, t+)>∆T

(v) a0= 0, a1> 0 and r >∆T

(vi) a0= 0, a1< 0 and r ≤ 0

(vii) a0= 0, a1= 0 and a2< 0

78

with the roots

t± =
−4a1 ±
q

16a2
1 − 60a0a2

10a0
(B.20)

r = −
3a2

4a1
(B.21)

Indeed in all these cases the function ẋ is strictly negative on]0,∆T] as shown in Figure B.1. Lemme 2

attests that this methods always leads to a solution.

Figure B.1: Cases where the function g(t) = 5a0 · t2 + 4a1 · t + 3a2 is strictly negative on]0,∆T]

79

C Pseudo-Code

The Algorithm 1 describes the implemented procedure to generate a Swing Foot Trajectory passing over

given bypass points (cf. Section 3.4.2).

Algorithm 1: Swing Foot Trajectory Generator considering bypass points
Data: Start position in 3D, goal position in 3D, list of bypass points

Result: 3D Swing Foot Trajectory passing above the bypass points in x-z plane

1 Generate nominal 3D Swing Foot Trajectory;

2 foreach BypassPoint in ListOfBypassPoints do

3 if zmax < BypassPoint.z then

4 zmax ← BypassPoint.z;

5 Recompute phases No.1, No. 2 and No. 3 of z-trajectory;

6 end

7 if BypassPoint in phase No.1 then

8 Find t x such that x(t x) = BypassPoint.x;

9 while z(t x)< BypassPoint.z do

10 if (BypassPoint.z −zmax) is small and zmax < limit then

11 Increase zmax ;

12 Recompute phases No. 1 and No. 3 of z-trajectory;

13 end

14 if t x y rp y < limit then

15 Increase t x y rp y and decrease tmax ,star t ;

16 Recompute x, y, φ, θ , ψ trajectories and phase No.1 of z-trajectory;

17 Recompute t x ;

18 end

19 end

20 else if BypassPoint in phase No. 3 or No. 4 then

21 Find t x such that x(t x) = BypassPoint.x;

22 while z(t x)< BypassPoint.z do

23 if (BypassPoint.z −zmax) is small and zmax < limit then

24 Increase zmax ;

25 Recompute phases No. 1 and No. 3 of z-trajectory;

26 end

27 if tmax ,end < limit then

28 Increase tmax ,end ;

29 Recompute phase No.3 of z-trajectory;

30 end

31 end

32 end

33 end

80

D Computation of the Estimated ZMP

This appendix contains the mathematics to compute an estimation of the ZMP during a DSP based on

the virtual ZMP method of Sato et al. [19] (cf. Section D.1). The mathematics were adapted to fit to

our framework. The calculations for the SSP are already presented in Section 4.2.5. In Section D.2 it is

shown that computing the ZMP with the virtual ZMP method or with the EZMP method (both presented

in Section 2.3.1 and Section 4.2.5) leads to the same result.

D.1 Estimated ZMP at DSP

During a DSP the ZMP position pes t relative to the robot frame can be computed using the relation

pes t × Fmeas
t ot = pes t

r f × Fmeas
r f + pes t

l f × Fmeas
l f (D.1)

where

Fmeas
t ot = Fmeas

r f + Fmeas
l f (D.2)

and the vectors pes t
r f

and pes t
l f

are the ZMP of the right and left foot computed as at SSP (cf. Section 4.2.5).

Equation (D.1) can be rewritten as

pes t × Fmeas
t ot = (rr obot→r f + p̂r f)× Fmeas

r f + (rr obot→l f + p̂l f)× Fmeas
l f (D.3)

= rr obot→r f × Fmeas
r f + rr obot→l f × Fmeas

l f +τmeas
r f +τmeas

l f
  

τmeas
t ot

(D.4)

To avoid unnecessary addition of measured values which causes a more noisy estimation this equation

was changed to be relative to the frame S∗r f :

p̂es t × Fmeas
t ot = p̂r f × Fmeas

r f + (rr f→l f + p̂l f)× Fmeas
l f (D.5)

= rr f→l f × Fmeas
l f +τmeas

t ot (D.6)

The estimated ZMP relative to the robot frame is then

pes t = rr obot→r f + p̂es t (D.7)

As in the case of a SSP equation (D.6) and the VS equation (4.24) can be summed up as a matrix

equation, so the estimated ZMP at DSP is

pes t = rr obot→r f +F−1V (D.8)

81

where

F =

⎡

⎢

⎣

0 F meas
z,tot −F meas

y,tot

−F meas
z,tot 0 F meas

x ,tot

kx ky kz

⎤

⎥

⎦
and V =

⎡

⎢

⎣

F meas
z,l f · yr f→l f − F meas

y,l f · zr f→l f +τx ,tot

F meas
x ,l f · zr f→l f − F meas

z,l f · x r f→l f +τy,tot

c0

⎤

⎥

⎦
(D.9)

D.2 Virtual ZMP and Extended ZMP on flat ground

As explained in Section 4.2.5, the computation of the ZMP position using the method of the virtual ZMP

on the ZML [19] do not exactly correspond to the definition of the ZMP. Indeed, it considers the torques

in each direction to be zero at the ZMP, although only the horizontal torques needs to be zero, as pointed

out in [16]. On the contrary, the mentioned method of EZMP [20] is based on the real definition of the

ZMP. However, on flat ground both methods lead to the same result as shown below.

ZMP computation on flat ground using the ZML method

In this paragraph, the equations presented in Section 4.2.5 are applied to the case of a SSP on flat

ground. The equation (4.22) of the ZML is recalled below:

p̂i × Fmeas
i = τmeas

i (D.10)

where i ∈ {r f , l f } depending on which foot is on the ground, Fmeas
i

and τmeas
i

are the forces and torques

measured by the F/T sensors and p̂i is the position vector of the ZMP relative to S∗i (cf. Section 4.2.5).

On flat ground the vertical component of p̂i verifies

p̂z, i = 0 (D.11)

Combining equations (D.10) and (D.11) leads to the system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

F meas
z,i p̂y,i − F meas

y,i p̂z,i = τmeas
x ,i

F meas
x ,i p̂z,i − F meas

z,i p̂x ,i = τmeas
y,i

p̂z, i = 0

(D.12)

whose solution is
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

p̂x ,i = −
τmeas

y,i
Fmeas

z,i

p̂y,i =
τmeas

x ,i
Fmeas

z,i

p̂z, i = 0

(D.13)

82

ZMP computation on flat ground respecting the ZMP definition
When considering the real definition of the ZMP, only the horizontal torques have to be zero [16]).

This consideration lead to the following equation

p̂i × Fmeas
i +

⎡

⎢

⎣

0

0

τz,zmp

⎤

⎥

⎦
= τmeas

i (D.14)

where τz,zmp is the vertical torque acting at the ZMP. To compute p̂i the two first equations of (D.14)

are considered [16]. Since p̂z, i = 0 is still valid, the same solution (D.13) is obtained.

83

E Software Parameters

In this appendix, the different software parameters mentioned throughout this thesis are listed with their

implemented value. The GPG parameter values in Section E.1 are generally valid for THORMANG3,

while the BC parameters have to be specially tuned for the considered robot. Thus, the values listed

in Section E.2 are only valid for Johnny #5. The former as well as the new walking software run in

real-time with a loop duration of Ts = 8 ms.

E.1 Gait Pattern Generator Parameters

Table E.1: Parameters of Robotis gait and generated trajectories (cf. Section 3)

Param. Value Description
Hcob 0.63 m Height of the CoB
Hcom 0.5 m Height of the CoM
mtotal 42.533 kg Total mass of THORMANG3 computed in Robotis’ software
∆Xstep 0.1 m Step length
Tstep 1.0 s Step duration
TDSP 0.2 s DSP duration
TSSP 0.8 s SSP duration
∆Z f oot 0.1 m Amplitude of the swinging complement of the Swing Foot Trajectory
∆Zcob 0.01 m Amplitude of the swap motion of the CoB

Table E.2: Parameters of the new gait (cf. Section 3). The question marks correspond to value that have
not been tuned yet.

Param. Dflt step Big step Description

Hcob 0.63 m 0.63 m Height of the CoB

Hcom 0.7 m 0.7 m Height of the CoM

mtotal 48.5 kg 48.5 kg Real total mass of Johnny #5 (measured)

∆Xstep 0.1 m 0.25 m Step length

Tstep 1.0 s ? s Step duration

TDSP 0.2 s ? s DSP duration

TSSP 0.8 s ? s SSP duration

84

Table E.3: Parameters of the improved Swing Foot Trajectory with their values (cf. Section 3.4.2)

Param. Value Description

Tuned:

∆Tappro 0.16 s Period of the vertical approach phase

∆Zmin 0.10 m Minimal global amplitude of the z trajectory

∆Zmax 0.30 m Maximal global amplitude of the z trajectory

∆Zappro 0.03 m Vertical approach distance for the vertical approach phase

Calculated:

∆Zappro,min 0.06 m Minimal global vertical approach distance of the z trajectory

Vmax 0.38 m.s−1 Velocity at the beginning of the vertical approach phase

Amax 2.34 m.s−2 Acceleration at the beginning of the vertical approach phase

E.2 Balance Control Parameters

Table E.4: Cut-off frequencies of the low-pass filters for the sensor outputs tuned by Robotis (cf. Sec-
tion 4.1.1)

Sensor Cut-off freq.

IMU 12 Hz

F/T sensor 10 Hz

Table E.5: Gains of the PD tracking controllers of the joint commands tuned by Robotis (cf. Section 4)

Joint P gain D gain

hip yaw 1.0 0

hip roll 1.5 0

hip pitch 0.15 0

knee pitch 0.15 0

ankle pitch 0.05 0

ankle roll 0.05 0

Table E.6: Offset parameters of the CoB (cf. Section 3.1 and Section 6.3.2). The question mark correspond
to values that are manually tuned after each new joint calibration as explained in Section 6.3.2.

Param. Former value New value

x̄cob −0.015 m ? m

ȳcob 0.0 m ? m

φ̄cob - ? rad

θ̄cob - ? rad

85

Table E.7: Parameters of Robotis controllers (cf. Section 4.1). The outputs of the PD controllers are multi-
plied by a weight coefficient: u= w · (kpe+kd ė). The subscript i corresponds to r f (right foot)
or l f (left foot).

Controller Weight (w) P Gain (kp) D Gain (kd) Input (e) Output (u)

IMU control:

roll angle 1 1.0 0 φdes −φmeas ∆φimu,1

roll velocity 0.1 0.3 0 v des
φ
− v meas

φ
∆φimu,2

pitch angle 1 1.0 0 θ des − θmeas ∆θimu,1

pitch velocity 0.1 0.3 0 v des
θ
− v meas

θ
∆θimu,2

F/T control:

force x 0.001 0.05 0.001 F des
x ,i − F meas

x ,i ∆x f t,i

force y 0.001 0.05 0.001 F des
y,i − F meas

x ,i ∆y f t,i

force z 0.001 0.02 0.001 F des
z,i − F meas

x ,i ∆z f t,i

torque x 1 0.0015 0.0002 τdes
x ,i −τ

meas
x ,i ∆φ f t,i

torque y 1 0.0015 0.0002 τdes
y,i −τ

meas
y,i ∆θ f t,i

Table E.8: List of the new controllers (cf. Section 4.2).

Controller Type Input Output

IMU control:

roll angle P φdes −φmeas ∆φimu,1

roll velocity P v des
φ
− v meas

φ
∆φimu,2

pitch angle P θ des − θmeas ∆θimu,1

pitch velocity P v des
θ
− v meas

θ
∆θimu,2

F/T control:

torque x PD τdes
x ,i −τ

meas
x ,i ∆φ f t,i

torque y PD τdes
y,i −τ

meas
y,i ∆θ f t,i

landing offset offset landing detection ∆zo f f set,i

impact reducer damping F des
z,i − F meas

z,i ∆zlanding,i

force z PD (F des
z,r f − F des

z,l f)− (F
meas
z,r f − F meas

z,l f) ∆zdsp,i

86

Table E.9: Saturation values of the outputs of the Balance Control (cf. Section 4.3). The subscript i corre-
sponds to r f (right foot) or l f (left foot).

BC Output Former saturation limits New saturation limits

∆xcob ±0.05 m ±0.05 m

∆ycob ±0.05 m ±0.05 m

∆x i ±0.05 m ±0.01 m

∆yi ±0.05 m ±0.01 m

∆zi ±0.05 m ±0.03 m

∆φi ±15◦ ±0.13 rad (≈ 7.4◦)
∆θi ±15◦ ±0.13 rad (≈ 7.4◦)
∆ψi ±15◦ -

87

F Walking Experiments

Figure F.1: Snapshots of the default walking gait (step length of 0.1 m and step duration of 1 s) tested
on the real robot with the new GPG and Robotis’ BC

88

Figure F.2: Case of a large roll angle of the real robot that could not be stabilized by Robotis’ IMU control
loop (cf. Section 4.1.5). In the last snapshot, the right foot of Johnny #5 should already have
reached the ground. The lapse of time between two snapshots is about 0.2 s.

Figure F.3: Snapshots of a walking experiment on stairs of 5 cm in the simulation with the new GPG and
no BC (open loop mode)

89

Acronyms

BC Balance Control

CoB Center of Body

CoM Center of Mass

CoP Center of Pressure

DoF Degree of Freedom

DSP Double-Support Phase

EZMP Extended Zero-Moment Point

F/T Force/Torque

FK Forward Kinematics

GPG Gait Pattern Generator

GUI Graphical User Interface

IK Inverse Kinematics

IMU Inertial Measurement Unit

l3 Legged Locomotion Library

LIPM Linear Inverted Pendulum Model

MPC Model Predictive Control

ROS Robot Operating System

SSP Single-Support Phase

URDF Unified Robot Description Format

VCP Virtual Contact Plane

VS Virtual Slope

ZML Zero-Moment Line

ZMP Zero-Moment Point

ZMP-PC ZMP Preview Control

91

List of Figures

1.1 Johnny #5, the humanoid robot of the SIM lab . 2

1.2 Hardware of Johnny #5 . 3

2.1 Classical structure of walking algorithms . 6

2.2 Example of a standard footstep plan with desired CoM and ZMP trajectories in the trans-

verse plane . 6

2.3 3D-Linear Inverted Pendulum Model (LIPM) . 7

2.4 The cart-table model in 2D . 9

2.5 Block scheme of the ZMP Preview Control . 9

2.6 Gain Gp of the preview action . 10

2.7 Trajectories generated by ZMP Preview Control . 11

2.8 Virtual Slope method of Sato et al. [19] on stairs . 12

3.1 Internal structure of the GPG . 17

3.2 Initial pose and CoB position of THORMANG3 in Gazebo . 18

3.3 Reference frames of the GPG . 18

3.4 Reference frames of the feet . 19

3.5 Case studies for the Swing Foot Trajectory . 20

3.6 Robotis’ ground Swing Foot Trajectory on flat ground . 21

3.7 Robotis’ Swing Foot Trajectory in x-z plane . 22

3.8 Variation of the maximum of Robotis’ Swing Foot Trajectory in z direction 23

3.9 x, y and z components of new Swing Foot Trajectory with vertical landing on flat ground . 24

3.10 New Swing Foot Trajectory with vertical landing in x-z plane on flat ground 24

3.11 Vertical component of the new Swing Foot Trajectory on uneven ground 25

3.12 Comparison between polynomial trajectories of different orders 26

3.13 New Swing Foot Trajectory on stairs of 15 cm considering bypass points 28

3.14 Virtual Slope between ZMP references . 30

4.1 Internal structure of the BC . 31

4.2 Feet positions at the end of a SSP when the robot is tipping over 34

4.3 Block diagram of the Balance Controllers . 35

4.4 Geometrical signification of the position correction of the IMU control 37

6.1 Comparison between the measures by the simulated and by the real F/T sensors 48

6.2 Robotis’ feet and CoB trajectories generated for a default walking gait with or without

swap motion of the CoB . 49

6.3 Position of the left and right knee pitch joints by a default walking gait with or without

swap motion on the real robot . 50

6.4 Measured horizontal forces during a default walking gait with the real robot 51

6.5 Principle of the experimental estimation of the CoM height 53

6.6 Computed values of Hcom relative to the pitch angle of the robot 54

6.7 Preview Gain of the ZMP-PC depending on the height Hcom 55

6.8 Trajectories of the CoM generated by the ZMP-PC depending on its height Hcom 55

6.9 Estimated ZMP by walking on flat ground for different values of Hcom 56

92

6.10 Force in z direction measured by the F/T sensors (comparison “torque on”/“torque off”) . 58

6.11 Tests 1 and 2 of the ZMP estimation . 61

6.12 Tests 3 and 4 of the ZMP estimation . 61

6.13 Position of the estimated ZMP on a VS of 50% relative to the time during a push experiment 62

6.14 2D representations of the position of the estimated ZMP on a VS of 50% relative to the

time during a push experiment . 62

7.1 CoB and feet trajectories generated by the GPG for walking on stairs of 5 cm 67

7.2 Overstretched knees on a stair of 10 cm in the simulation . 68

7.3 CoB and feet trajectories generated by the new GPG for walking on a plateau of 5 cm . . . 68

7.4 Test case walking on a plateau of 5 cm . 69

A.1 Boston Dynamics Atlas humanoid robot . 73

A.2 Control modes of DYNAMIXEL PRO servomotors . 74

B.1 Cases where the function g(t) = 5a0 · t2 + 4a1 · t + 3a2 is strictly negative on]0,∆T] . . . 79

F.1 Snapshots of the default walking gait tested on the real robot with the new GPG and

Robotis’ BC . 88

F.2 Case of a large roll angle of the real robot that could not be stabilized by Robotis’ IMU

control loop . 89

F.3 Snapshots of a walking experiment on stairs of 5 cm in the simulation with the new GPG

and no BC . 89

93

List of Tables

1.1 Specifications of Johnny #5 . 3

3.1 Construction stages of Robotis’ Swing Foot Trajectory in z direction 22

4.1 Status variables of the new BC for a walking gait of two default steps 36

E.1 Parameters of Robotis gait and generated trajectories . 84

E.2 Parameters of the new gait . 84

E.3 Parameters of the improved Swing Foot Trajectory . 85

E.4 Cut-off frequencies ot the low-pass filters . 85

E.5 Gains of the PD tracking controllers of the joint commands 85

E.6 Offset parameters of the CoB . 85

E.7 Parameters of Robotis controllers . 86

E.8 List of the new controllers . 86

E.9 Saturation values of the outputs of the Balance Control . 87

94

Bibliography

[1] Robin R Murphy et al. Search and rescue robotics. In: Springer handbook of robotics. Springer, 2008,
pp. 1151–1173.

[2] Robotis. ROBOTIS e-Manual: Introduction. 2018. URL: http://emanual.robotis.com/docs/en/
platform/thormang3/introduction/#introduction. (accessed: 28.06.2018).

[3] Michael Thomas Rouleau. Design and evaluation of an underactuated robotic gripper for manipula-
tion associated with disaster response. PhD thesis. Virginia Tech, 2015.

[4] Robotis. THORMANG3: Full size open platform humanoid. 2018. URL: http://www.robotis.us/
thormang3/. (accessed: 28.06.2018).

[5] Florian Reimold. Robust Locomotion of a Humanoid Robot Considering Grasped Objects. MA thesis.
TU Darmstadt, 2016.

[6] Marcell Missura. Analytic and learned footstep control for robust bipedal walking. PhD thesis.
Universitäts-und Landesbibliothek Bonn, 2016.

[7] Thomas Buschmann et al. Humanoide Laufmaschinen. In: at-Automatisierungstechnik Methoden
und Anwendungen der Steuerungs-, Regelungs- und Informationstechnik 61.4 (2013), pp. 217–232.

[8] Scott Kuindersma et al. Optimization-based locomotion planning, estimation, and control design for
the atlas humanoid robot. In: Autonomous Robots 40.3 (2016), pp. 429–455.

[9] Andrea Del Prete et al. Implementing torque control with high-ratio gear boxes and without joint-
torque sensors. In: International Journal of Humanoid Robotics 13.01 (2016), p. 1550044.

[10] Shuuji Kajita et al. Biped walking pattern generation by using preview control of zero-moment point.
In: Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on. Vol. 2.
IEEE. 2003, pp. 1620–1626.

[11] Thomas Buschmann. Simulation and control of biped walking robots. PhD thesis. Technische Uni-
versität München, 2010.

[12] Hayder FN Al-Shuka et al. Multi-level control of zero-moment point-based humanoid biped robots: a
review. In: Robotica 34.11 (2016), pp. 2440–2466.

[13] Toru Takenaka, Takashi Matsumoto, and Takahide Yoshiike. Real time motion generation and con-
trol for biped robot-1 st report: Walking gait pattern generation. In: Intelligent Robots and Systems,
2009. IROS 2009. IEEE/RSJ International Conference on. IEEE. 2009, pp. 1084–1091.

[14] Pierre-Brice Wieber. Trajectory free linear model predictive control for stable walking in the presence
of strong perturbations. In: Humanoid Robots, 2006 6th IEEE-RAS International Conference on. IEEE.
2006, pp. 137–142.

[15] Koichi Nishiwaki and Satoshi Kagami. Frequent walking pattern generation that uses estimated
actual posture for robust walking control. In: Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-
RAS International Conference on. IEEE. 2009, pp. 535–541.

[16] Miomir Vukobratović and Branislav Borovac. Zero-moment point—thirty five years of its life. In:
International journal of humanoid robotics 1.01 (2004), pp. 157–173.

[17] Tohru Katayama et al. Design of an optimal controller for a discrete-time system subject to preview-
able demand. In: International Journal of Control 41.3 (1985), pp. 677–699.

[18] Pierre-Brice Wieber. Viability and predictive control for safe locomotion. In: Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International Conference on. IEEE. 2008, pp. 1103–1108.

[19] Tomoya Sato et al. Walking trajectory planning on stairs using virtual slope for biped robots. In: IEEE
transactions on industrial electronics 58.4 (2011), pp. 1385–1396.

95

http://emanual.robotis.com/docs/en/platform/thormang3/introduction/#introduction
http://emanual.robotis.com/docs/en/platform/thormang3/introduction/#introduction
http://www.robotis.us/thormang3/
http://www.robotis.us/thormang3/

[20] Guangbin Sun, Hong Wang, and Zhiguo Lu. A novel biped pattern generator based on extended ZMP
and extended cart-table model. In: International Journal of Advanced Robotic Systems 12.7 (2015),
p. 94.

[21] Shuhei Shimmyo, Tomoya Sato, and Kouhei Ohnishi. Biped walking pattern generation by using pre-
view control with virtual plane method. In: Advanced Motion Control, 2010 11th IEEE International
Workshop on. IEEE. 2010, pp. 414–419.

[22] Shuhei Shimmyo and Kouhei Ohnishi. Nested preview control by utilizing virtual plane for biped
walking pattern generation including COG up-down motion. In: IECon 2010-36th Annual Conference
on IEEE Industrial Electronics Society. IEEE. 2010, pp. 1571–1576.

[23] Weiwei Huang et al. Pattern generation for bipedal walking on slopes and stairs. In: Humanoid
Robots, 2008. Humanoids 2008. 8th IEEE-RAS International Conference on. IEEE. 2008, pp. 205–
210.

[24] Koichi Nishiwaki and Satoshi Kagami. High frequency walking pattern generation based on preview
control of ZMP. In: Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on. IEEE. 2006, pp. 2667–2672.

[25] Shuhei Shimmyo, Tomoya Sato, and Kouhei Ohnishi. Biped walking pattern generation by using
preview control based on three-mass model. In: IEEE transactions on industrial electronics 60.11
(2013), pp. 5137–5147.

[26] Chenglong Fu and Ken Chen. Gait synthesis and sensory control of stair climbing for a humanoid
robot. In: IEEE Transactions on Industrial Electronics 55.5 (2008), pp. 2111–2120.

[27] Evrim Taşkıran et al. Walking Control of a Biped Robot on an Inclined Plane. In: IFAC Proceedings
Volumes 42.19 (2009), pp. 254–259.

[28] Jiang Yi et al. Walking algorithm of humanoid robot on uneven terrain with terrain estimation. In:
International Journal of Advanced Robotic Systems 13.1 (2016), p. 35.

[29] Shuuji Kajita et al. Biped walking pattern generator allowing auxiliary zmp control. In: Intelligent
Robots and Systems, 2006 IEEE/RSJ International Conference on. IEEE. 2006, pp. 2993–2999.

[30] Koichi Nishiwaki and Satoshi Kagami. Strategies for adjusting the zmp reference trajectory for main-
taining balance in humanoid walking. In: Robotics and Automation (ICRA), 2010 IEEE International
Conference on. IEEE. 2010, pp. 4230–4236.

[31] Koichi Nishiwaki and Satoshi Kagami. Simultaneous planning of com and zmp based on the preview
control method for online walking control. In: Humanoid Robots (Humanoids), 2011 11th IEEE-RAS
International Conference on. IEEE. 2011, pp. 745–751.

[32] Holger Diedam et al. Online walking gait generation with adaptive foot positioning through linear
model predictive control. In: Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ Interna-
tional Conference on. IEEE. 2008, pp. 1121–1126.

[33] Arne-Christoph Hildebrandt et al. Real-time pattern generation among obstacles for biped robots.
In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE. 2015,
pp. 2780–2786.

[34] Shuuji Kajita et al. A running controller of humanoid biped HRP-2LR. In: Robotics and Automation,
2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE. 2005, pp. 616–
622.

[35] Shuuji Kajita et al. Biped walking stabilization based on linear inverted pendulum tracking. In:
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE. 2010,
pp. 4489–4496.

[36] Achim Stein. Development of a Whole-Body Planning System for Humanoid Rescue Robots. MA thesis.
TU Darmstadt, 2015.

96

[37] John G Ziegler and Nathaniel B Nichols. Optimum settings for automatic controllers. In: trans.
ASME 64.11 (1942).

[38] Mitsuharu Morisawa et al. Reactive biped walking control for a collision of a swinging foot on uneven
terrain. In: Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International Conference on. IEEE.
2011, pp. 768–773.

[39] Russ Tedrake and the Drake Development Team. Drake: A planning, control, and analysis toolbox
for nonlinear dynamical systems. 2016. URL: http://drake.mit.edu. (accessed: 20.06.2018).

[40] Scott Kuindersma et al. Optimization-based locomotion planning, estimation, and control design for
the atlas humanoid robot. In: Autonomous Robots 40.3 (2016), pp. 429–455.

[41] Kenji Kaneko et al. Design of prototype humanoid robotics platform for HRP. In: Intelligent Robots
and Systems, 2002. IEEE/RSJ International Conference on. Vol. 3. IEEE. 2002, pp. 2431–2436.

[42] Marie-Sophie Elisa Schumacher. Development and implementation of a demonstrator for human-
compatible control approaches with an integrated servo drive. MA thesis. TU Darmstadt, 2015.

[43] Robotis. ROBOTIS e-Manual v1.27.00: Control Table. 2010. URL: http://support.robotis.
com/en/product/actuator/dynamixel_pro/dynamixelpro/control_table.htm. (accessed:
20.06.2018).

97

http://drake.mit.edu
http://support.robotis.com/en/product/actuator/dynamixel_pro/dynamixelpro/control_table.htm
http://support.robotis.com/en/product/actuator/dynamixel_pro/dynamixelpro/control_table.htm

	Introduction
	State of the Art of ZMP-based Control Concepts
	Design of the Gait Pattern Generator
	Design of the Balance Control
	Implementation
	Tuning and Functional Testing
	Evaluation
	Conclusion
	Torque Control using Drake (MIT)
	Mathematical Proofs of Monotonic Trajectories
	Pseudo-Code
	Computation of the Estimated ZMP
	Software Parameters
	Walking Experiments
	Acronyms
	List of Figures
	List of Tables
	Bibliography

