Development of a User Interface
and Back-End for Planning Tasks
using Autonomous Robots

Entwicklung einer Benutzerschnittstelle zur Planung komplexer Inspektionsaufgaben mit
autonomen Robotern

Bachelor-Thesis von Stefan Manuel Fabian

Tag der Einreichung:

1. Gutachten: Prof. Dr. Oskar von Stryk
2. Gutachten: Dr.-Ing. Stefan Kohlbrecher

Development of a User Interface and Back-End for Planning Tasks using Autonomous Robots
Entwicklung einer Benutzerschnittstelle zur Planung komplexer Inspektionsaufgaben mit au-
tonomen Robotern

Vorgelegte Bachelor-Thesis von Stefan Manuel Fabian

1. Gutachten: Prof. Dr. Oskar von Stryk
2. Gutachten: Dr.-Ing. Stefan Kohlbrecher

Tag der Einreichung:

Abstract

The ARGOS challenge is a competition hosted by TOTAL in collaboration with the ANR (Agence
nationale de la recherche) with the objective to create a robot system that can be used for in-
spection tasks on off- and onshore oil and gas production sites.

The 3rd competition requires an operator without detailed knowledge about the used robot
control software to create mission plans after a short introduction.

Currently, the mission plan is directly modeled as a finite state machine using the FlexBe behav-
ior modeling framework.

This approach requires the robot operator to have significant expert knowledge, however.

The user interface presented in this thesis allows for a quick creation of missions with few clicks
in a virtual model of the area of robot operation which greatly improves simplicity.

As part of this thesis, aside from the planning user interface, a general purpose overlay for the
robot visualization tool RViz and an intermediate language for the specification of mission plans
have been developed.

Zusammenfassung

Die ARGOS Challenge ist ein Wettbewerb, veranstaltet von TOTAL in Zusammenarbeit mit der
ANR (Agence nationale de la recherche). Sie hat zum Ziel, ein Robotersystem zu entwickeln,
das Inspektionsaufgaben auf Ol- und Gasférderungsplattformen durchfiihren kann.

Im dritten Wettkampf soll ein Operator ohne detailliertes Vorwissen iiber die benutzte
Roboterkontrollsoftware nach einer kurzen Einfiihrung Missionsplane erstellen.

Aktuell werden Missionsplane mithilfe des FlexBe Verhaltensmodellierungsframeworks direkt
als endlicher Automat modelliert.

Dieser Ansatz erfordert signifikantes Expertenwissen von dem Operator.

Die Benutzeroberfldche, die in dieser Thesis vorgestellt wird, erlaubt ein schnelles und einfaches
Erstellen von Missionsplidnen in einem virtuellen Modell der Einsatzumgebung.

Als Teil dieser Thesis wurde neben der Benutzeroberfliche ein universelles Overlay fiir das
Robotervisualisierungstool RViz und eine Zwischensprache fiir die Spezifizierung von Mission-
splanen entwickelt.

Contents
1. Introduction 1
1.1, Motivation i it e e e e e e e e e e e e e e e e e 1
1.2. ARGOS Challenge e 2
1.3. Robot Operating System i ittt e e e e e e 5
1.4, RVIZ . . . e e e e e e e e 6
1.5, Ogre e e e e e e 7
1.6, Qt. o e 8
2. State of Research 9
3. Concepts 10
3.1. Visual Representation of the Mission, 10
3.2. Internal Representation of the Mission 11
3.3. UserInterface i e 13
3.4, DESIZN . . o i e e e e e e e e e e e e e e 15
4. Software 16
4.1. Implementation v ittt e e e e e e e e e e e 16
4.2. General Displays, Tools and View Controllers 16
4.2.1. Mouse View Controller 16
4.2.2. Tool SelectionDisplay 17
4.2.3. UMAD Floor Control. it 17
4.2.4. Robot Navigation Tool, 17
4.2.5. Place Obstacle Tool 18
4.3. 0verlay e 19
4.3.1. RenderingtheOverlay 19
4.3.2. SIIUCLUTE ¢ v it e 20
4.3.3. OverlayElement 21
4.3.4. OverlayUiElement ittt eee. 22
4.3.5. OverlayStateManager v v v v v vttt et e e e 23
4.3.6. Panels. 24
4.3.7. POPUPS . . . o o i e e 26
4.3.8. OverlayWrapperControl. 27
4.4. Internal Representation of the Mission 28
4.5. ROSNodeso e 29
4.5.1. Floor PublisherNode 29
4.5.2. Argo Interactive World Model VisualizationNode 29
4.5.3. Back-end PlanningNode, 30
4.6. Visual Representation of the Mission 31

5. Evaluation 34
5.1. ConducCtion o o i 34
5.2, Results o o s 36

6. Conclusion and Outlook 38

Bibliography 39

A. Appendix 40
List Of FigUIES o o ot e e e e e e e e e e e e 40
List of Tables s 40
ALl SUIVEY . . L o e e e 41
A2, Survey Results 44

1 Introduction

1.1 Motivation

One requirement of the third competition in the ARGOS challenge is that a qualified operator
without detailed knowledge about the used robot control software can easily create mission
plans given in the form of a literal text after a short introduction.

Currently, the mission planning is done directly in FlexBe[1] as seen in 1.1.

While planning in FlexBe is very powerful and flexible, it is also prone to mistakes and not easy
to use for someone who has never worked with it before.

FlexBE App
(& Add State sew Data Flow Graph 2 Undo . Hide Comments
5 =] (& Add Behavior -\, Check Behavior & Redo & Write Comment
Behavior Statemachine Runtime Configuration i .
= Dashboard Editor Control (@ Add Container] Save Behavior ¥ Reset Version: 108 @

Functional Mission 1 Climb Stairs (root)

| Set designation in private configuration

Start_Report £
StartMissionReportState (OF3
failed

€ done) (Tailed)

\ Enter Site Initial < _/

Enter Site Initial
EnterSitelnitialSM

Mission
Concurrency

&
6 states \\

(finished > T gpa) Tow_yvollage™>

Drive_To_Start_Area nform Faiture 5 \Hmdle_cm &) \’ Handle Low Voltage <
Statemachine LogState Statemachine Statemachine

7 states. 10 states 9 states

Cfnished done } finished_

Clailed fnished> Aaie
- Cailed) -
Inform_Complete +5+| Stop_Report)
LogState Coone StopMissionReportState
done
@
finished

Figure 1.1.: An example of a mission planned in FlexBe.

To maximize the chances of winning the ARGOS challenge, a new planning user interface has
to be developed.
An interface that is intuitive and can be introduced to a new user in less than half an hour while
still providing enough flexibility to plan even the most complex missions the organizers might
think of.

1.2 ARGOS Challenge

The ARGOS challenge, hosted by TOTAL in collaboration with the ANR!, aims to foster the de-
velopment of a robot that is able to autonomously oversee the state of on- and offshore oil and
gas production sites, essentially, eliminating the need for human workforce in these often very
harsh and dangerous environments.

Figure 1.2.: The UMAD site where the competition is held.

In the context of the ARGOS challenge TU Darmstadt paired up with the Austrian company
Taurob as Team ARGONAUTS which is one of the 5 teams that were selected by the ANR for
funding and participation out of 31 applicants.

Taurob is responsible for the robot’s hardware, basic locomotion and teleoperation capabilities
whereas TU Darmstadt develops the autonomous robot capabilities and operator-robot interac-
tion[2].

Given that the robots in the ARGOS challenge are developed with the aim to be used by hu-
man supervisors on oil production sites, there are several requirements posed on the hard- and
software.

The weather on oil production sites, especially offshore oil production sites, can be very harsh.
For that reason, the robot has to be able to operate in temperatures ranging from -50°C to 50°C,
with wind forces reaching 70 km/h and gusts of up to 100 km/h, operation during day and night
with rain, fog, vapor or smoke possibly limiting vision capabilities, a corrosive environment with
salty air and a relative humidity of up to 100%.

1 Agence Nationale de la Recherche - A french institution for the funding of scientific research.

Additionally, it needs to be ATEX? certified due to a potentially explosive atmosphere caused
by the presence of hydrocarbons.

Considering that the robot is used on a production site which was made for humans and
humans might still be on the production site working alongside the robot, there are a few re-
strictions on the robot.

It needs to be able to climb stairs to get from one floor to another. There is no elevator.
Checkpoints - i.e. pressure gauges, water levels, valves etc. - are reachable for an average hu-
man being, which means the robot has to be able to read information from checkpoints located
at minimum 0.2 m to a maximum of 2 m with a maximum lateral deviation of 0.5 m relative to
the pathway.

Some of these checkpoints might be modified unexpectedly and can vary in their orientation by
+90° and their position may be anywhere in a sphere with a radius of 10 cm around the nominal
position.

In the case of an emergency evacuation, the robot should not block the walkway, therefore it
should not be wider than 35 cm, a width less than 35 cm actually gives a bonus in the competi-
tion, more give a penalty of up to -3% at 70 cm width and if it exceeds 70 cm, it is disqualified.

The "Cart" function - the platform carries a mast or an arm that holds the payload
sensors and vital organs.

The "Move" function - the ARGOS robot has to visit checkpoints in a 3D environ-
ment, climb and descend stairs, localize itself and find its way, return to the docking
station (starting area) or safe areas, etc.

The "Sense & React" function - the payload sensors provide data that has to be
processed on the robot online. Depending on the processing result, an appropriate
conditional behavior/reaction has to be triggered. Similar associations are expected
when a hazard occurs (detection of GPA, obstacle, acoustic gas leak, heat source,
and abnormal noise) or other events (low level of batteries, WiFi shutdown or distur-
bance, emergency stop) or when an inner dysfunction occurs.

The "Interact" function - the function includes the HMI, communications, possible
interactions between the robot (in autonomous and in supervisory modes) and hu-
mans on the platform. The function plays a major role in supervisory mode, which is
the only way in case of emergency situation to control the robot and gather informa-
tion in a highly degraded environment.

Figure 1.3.: The functional categories, taken from the ‘Rules of the 3rd competition’[3]

The robot is required to have two different modes of operation.
In autonomous mode the robot autonomously traverses the site, inspects a set of checkpoints
consisting of pressure gauges, valves etc. while monitoring for abnormalities like gas leaks, hot
spots, different sound signals or alarms and new obstacles which can be positive obstacles, i.e.
a stone brick, or negative obstacles, i.e. a missing ground plate.
If the robot detects an anomaly, it is required to report his findings.

2 The ATEX regulations make sure that equipment is safe to use in a potentially explosive atmosphere. The

abbreviation ATEX derives from the french title ’Appareils destinés a étre utilisés en ATmosphéres EXplosibles’.

In supervisory mode, the operator has high-level control over the robot and can perform ac-
tions for which the robot was not programmed or in a degraded environment with the robot
still providing assistance functions like collision avoidance and power management.

The operator must always be able to change from one mode to the other at any time and there
should be no visible delay, no re-localization, and no information loss.

In three challenges the robot systems are evaluated using several criteria based on reliability,
safety, and robustness.
The robots main functions are separated into four categories as described in figure 1.3.

Mission’s designation: Mission #1
Main mode: Autonomous
Maximum mission total duration: 20’

MISSION PREPARATION PARAMETERS:
Default normal values/positions/levels for the checkpoints (as
Anomaly specified in the rules, appendix A)
specification: Real-time reporting: As per the rules
After-mission report: As per the rules
The robot is docked and connected in its docking station in the
Initial position: “Starting area” 1 or 2, specified by the ARGOS staff during the mission
preparation.
The mission ends when the robot is docked and connected in the
End of the mission: docking station in the “Starting area” 1 or 2, specified by the ARGOS
staff during the mission preparation.
The robot will have to control checkpoints in this precise order:
1. Checkpoint #1: read the value on pressure gauge 1
2. Checkpoint #4: read the position of valve R25
3. Checkpoint # 8: read the value on pressure gauge 5

Figure 1.4.: The script of the 1% mission of the 3™ competition.

A challenge usually consists of multiple missions. An example of the script for a mission is
given in 1.4.
In this mission, the robot starts at one of the two starting areas as defined in the competition
rules, has to enter the site and control the checkpoints 1, 4 and 8 autonomously.
Afterward, it has to leave the site again and drive back to the docking station in the start area.
During these missions, there can be anomalies as mentioned above and the robot has to detect
them and act appropriately.

The first competition focused mainly on the first two functions (CArT and Move), the second
competition tested the improvements of the first two functions and some aspects of the func-
tions SENSE & REacT and INTERACT, and the last competition will test all four functions in detail
in scenarios derived from realistic situations when the robots are deployed in on- and offshore
production sites.

Apart from these main functions, there are lots of requirements for how the robot should react
to certain conditions, which also differs depending on the robots operational mode.

As for the results of the challenges, the first challenge is not taken into account, the second
competition accounts for 25% of the final score, while the third — and last — challenge makes up
for the remaining 75%.

As of now, the first two challenges already have taken place and in the official ranking, Team
ARGONAUTS is ranked second with the French Team VIKINGS being in the lead.

1.3 Robot Operating System

The Robot Operating System[4], or short ROS, is a framework providing all the tools and libraries
needed to create complex and robust robot interaction and behavior. It was designed to simplify
the creation of modular robot software components that can be written in any programming
language that supports networking.

Components in ROS are called Nodes.
A Node is essentially a standalone piece of software that can communicate with other nodes to
achieve its goal using ROS APIs®.
ROS also provides a parameter system in the form of a global key-value store, meaning nodes
can have parameters that influence their behavior and make them even more flexible.

ROS supports three different kinds of communication:

* Message Passing
* Remote Procedure Calls
* Preemptable Remote Procedure Calls

Message Passing is done using a Publisher and any number of Subscribers.
A Publisher is created by advertising a certain type on a topic. A topic is a named bus over which
messages can be exchanged.
Topics are strongly typed and Subscribers will only establish a connection if the types match.
However, they do allow for multiple Subscribers and even multiple Publishers on the same topic.
Optionally connect and disconnect callbacks can be provided, a queue size that determines how
many outgoing message can be queued for delivery until some have to be dropped and whether
or not the Publisher is latched can be set. A latched Publisher always sends the latest message to
new subscribers.
Subscribers listen for these messages and whenever the Publisher publishes a message, a callback
is executed on each Subscriber.
Aside from the obvious advantage of a well-tested and easy-to-use messaging system, it also
forces developers to define clear interfaces between the single components, resulting in better
and more reusable code.
The content of these messages is declared using an Interface Description Language, the message
IDL.
ROS manages all the details of communication such as the distribution to all subscribers, the
serialization and the deserialization of messages.

Remote Procedure Calls are called Services in ROS.
A node can provide any number of services by creating an instance of ros::ServiceServer for each
service. These services are also advertised on a topic and have a callback that is executed on
each service call.
A service callback has to return a boolean indicating whether or not the service call was success-
ful. It is passed two parameters by reference, a request and a response that is sent back to the
caller after execution.

3 Application Programming Interface

Services are just like messages declared using the message IDL.

Preemptable Remote Procedure Calls are called Actions in ROS.
Sometimes an operation can take some time, i.e. driving to a checkpoint. For such an operation
it would be good to monitor the progress of the operation or even cancel it along the way.
For this purpose ROS provides Actions.
Actions are essentially like Services with the exception that they can report progress during
execution and be canceled by the caller.

1.4 RViz

RViz[5] is actually an ROS tool.

In fact, it is even one of the most well-known tools in ROS according to ros.org.

However, considering its important role for the user interface presented in this thesis, it deserves
its own section.

RViz is a general purpose three-dimensional visualization tool for ROS.
It has a very rich set of built-in plugins to visualize common message types in ROS including
laser scans, point clouds, and camera images.
This renders RViz an incredibly useful tool for debugging. Being able to see what the robot sees
is of great help when trying to figure out why the robot behaves the way it does.

gy interact |3 Move Camera [iSelect <§-FocusCamera = Measure « 2D PoseEstimate 2DNavGoal @ PublishPoint < -
3 Displays x »a Views x
v # Global Options . T »
Fixed Frame map Type: | Orbit (rviz) = Zero
Background Color [l 48; 48; 48 v Current View Orbit (rviz)
Frame Rate 30 NearClip... 0,01
v @ Global Status: Warn Target Fra... <Fixed Frame>
© Fixed Frame No tf data. Actual error... Distance 10
> <% Grid Yaw 0,785398
Pitch 0,785398
» Focal Point 0;0;0
‘ 7.
D . 1 le
Add Save Remove Rename
(O Time I x
ROS Time: |0.00 ROS Elapsed: [0.00 wall Time: |1479810198.03 | Wall Elapsed: |45.62 [Experimental
Reset ol

Figure 1.5.: The different kinds of plugins in RViz

http://www.ros.org/core-components/#tools

In this thesis, RViz is going to be used as a base and extended using its extensive plugin
system.
RViz supports four different kinds of plugins as shown in fig 1.5:

* Tools

* Displays

e View Controllers
Dockable Panels

All these different kinds of plugins except for Dockable Panels can use RViz properties to allow
the configuration of the plugin — see figure 1.5 (Displays & View Controller).
Properties are automatically saved to and loaded from the RViz config file.

Tools usually have a single purpose.
For example, there is the default Interact tool which enables the user to interact with interactive
markers etc. or the Select tool which can be used to select objects in the 3D-view.
A tool can be selected using the tool menu at the top or if supported by the tool, using a hot-key.
Basically, which tool is used determines how the user interacts with the 3D-scene.
The default tools mainly affect the mouse interaction, though, they can also react to keyboard
events and even add elements to the scene.

Displays essentially add support for the visualization of ROS messages to the 3D-scene.
For example, the default MarkerDisplay can be set to a topic that publishes Marker messages,
and display these markers in the 3D-scene

View Controllers determine how the 3D-scene is viewed and the interaction with the camera.
For example, the default ViewControllers include an OrbitViewController where the camera orbits
a fixed point in the scene and when moving always stays focused at the fixed point.

The FPSViewController is quite the opposite where the camera position is fixed and similar to
First-Person Shooter games you can only move the camera with regard to its orientation.

Dockable Panels are basically Qt* widgets that can be docked anywhere in the RViz window.

1.5 Ogre

OGRE3D? is a scene-oriented, open-source 3D graphics rendering engine used by RViz to visual-
ize the 3D-scene.

In the context of this thesis, only the OverlayManager is important as it can be accessed as a
Singleton® class which can be used to render a material with a given texture on top of the 3D-
scene.

This essentially means that using the OverlayManager one can draw an image on top of the
3D-scene.

4 See section 1.6

OGRE - Open Source 3D Graphics Engine. URL: http://www.ogre3d.org/ (visited on 11/13/2016).

6 A singleton class is a class that is restricted to one instantiated object that is usually accessed globally.

http://www.ogre3d.org/

1.6 Qt

Qt is a widely used cross-platform application framework.

It powers a wide range of applications both commercial and non-commercial including the
aforementioned RViz.

Qt also adds a lot of useful extensions to the C+ + language.

One of the most important features and also heavily used in this thesis is the communication
between objects using signals and slots.

Classes using signals or slots have to extend the QObject class and need to be preprocessed by the
Qt Meta-Object Compiler which generates the C++ code necessary to provide the functionality
of signals and slots.

A signal can be sent by Qt objects and can contain event information.
A slot is a special function that receives the emitted signal and the provided event information.

2 State of Research

To the best of the author’s knowledge, there are no publications on user interfaces or even
mission planning for single autonomous inspection robots with a focus on an intuitive user ex-
perience available.

Most papers focus on multi-agent systems or they only plan one fixed mission in code.

There is of course other software for mission planning of single autonomous devices.
For example, MimosaZ2 - a tool for the preparation, supervision and analysis of IFREMER’s sub-
sea vehicle - and QGroundControl - a tool for flight control and mission planning for drones.
Though there is no paper on their design or implementation available and the type of device
they were developed for is inherently different from the robot that is used in the context of the
ARGOS challenge.

Of course, there is even software under active development for the exact same purpose.
However, this software is developed by Team ARGOS competitors in the challenge and not
publicly available.

The only information that can be found publicly on the internet about the mission planning of
the other teams is the image of Team LIO’s mission planning in figure 2.1, which is taken from
their presentation at ROSCon 2016[7].

They were also using a hierarchical state automaton similar to our back-end FlexBe, anyhow,
it is safe to assume that they are working on a more intuitive user interface for the mission
planning as well.

Argos_Mission

InspectionleeShort

|

EmergencySten Dnstacle InspectionLeeShort_lasks BameryFailure

\

e

InzpectionFloorl l @ — —

[InspectionfFloorl_Tasks] [Alarm]

Figure 2.1.: Mission Creation for Team LIO's ANYmal.

3 Concepts

3.1 Visual Representation of the Mission

One of the greatest challenges of developing a planning user interface is the presentation of the
planned mission to the user.

It has to be represented in a way that the user can intuitively understand whether the planned
mission is equal to the mission he envisioned or not.

Fortunately, there is another type of software that has had the need to represent planned ac-
tions intuitively to a broad audience for over 15 years.
Video games — or to be more specific strategic video games — feature a sometimes more, some-
times less sophisticated implementation of mission planning.
In basically every good strategy game, the ahead planning of tasks is a very important compo-
nent and years of development went into improving it, thus, they are a great place to look for
ideas.

However, most of them are still real-time which means that the player does not plan and
execute but rather plans while executing.
This is a key difference to the purpose of the user interface developed within this thesis.

Figure 3.1.: Mission planning in strategic video games (Planetary Annihilation).

When displaying the planned mission, it should be as close to the actual execution of the
mission as possible.
This includes a visualization of the path the robot is going to take to get from task A to task B.

Additionally, planned tasks have to be clearly distinguishable from the current position.
There are different approaches to accomplish this.
For example, the planned task may be colored differently and/or it is displayed semi-transparent

10

by applying an alpha value.

Another method is to reduce the visual details and only display a skeleton which is done in
figure 3.1.

For the envisioned user interface, an alpha approach is chosen to distinguish planned tasks from
the task that is currently selected.

Considering that a mission can get quite complex, it should also support showing only parts
of the mission —i.e. by limiting the number of displayed tasks to the last 5 tasks before and after
the current and/or grouping the tasks and provide the possibility to toggle the entire group’s
visibility.

3.2 Internal Representation of the Mission

Another issue with the mission planning in FlexBe is that it is normally meant to be used as the
robot’s only controller.

However, in the context of the ARGOS challenge, we need to be able to switch to supervi-
sion — maybe even do a part of the mission under supervision — and when switching back to
autonomous the mission should continue with the remaining tasks.

Mission Planning UI Mission Execution Manager Supervision UL L Done. Mission Execution Manager
Switching back to autonomous.
BBy tomaton Something that requires
human interaction happens FlexBe Automaton
for the remaining mission

Figure 3.2.: An exemplary mission flow.

FlexBe does not support such a behavior and though there might be ways to overcome this
and to build the FlexBe automaton in such a way that tasks that were done under supervision
can be skipped, this would be a very ugly and fragile solution.

To solve this problem and to provide a more robust solution, an intermediate language (IL)
had to be developed.
By using an IL as a layer of abstraction, the mission state can be tracked during both autonomous
execution and supervision.
Now, upon starting the mission a FlexBe automaton is generated from the IL. This is done by a
separate node, in the following paragraphs referred to as synthesizer.
If user interaction is required and therefore a switch to supervision is necessary, the FlexBe au-
tomaton is simply stopped, what has to be done is done in supervision and afterward, when
switching back to autonomous, a new FlexBe automaton consisting only of the mission’s re-
maining tasks is generated.

1

MissionSpecification
a0 tasks
& groups
= current
MissionGroup MissionTask
&= name = action
= start & name
= end & group
s repeat_count = object_id
= repeat_duration = velocity
= pose
= joint_states
= transitions
T
|
|
MissionTransitionCondition \I/
- type MissionTransition
e paraml < - target
= param?2 = conditions
= object_id

Figure 3.3.: The message structure for the intermediate language.

For the IL, the planning of missions is abstracted to the structures displayed in 3.3.
A mission consists of a set of tasks and optionally any number of groups.
The attribute current is only relevant for the mission planning user interface. It is used to visu-
ally set the current task apart from the other planned tasks. Also, new tasks are always inserted
after the current task.

Groups can, for example, be used to create an inspection round and repeat it for either a fixed
amount of repetitions, a fixed duration or both.
They were intentionally separated from the tasks to make it more robust.
The other option would have been to add a transition from the group’s end back to the start
task. However, the only advantage this would offer is that synthesizing might be a bit easier
because the synthesizer would not have to explicitly check if the task is the end of a group.
On the other hand, the synthesizer would have to handle the groups whereas, in the chosen
approach, a simpler synthesizer can choose to ignore groups.
Another advantage is that the synthesizer can decide when to leave the group — i.e. whether it
wants to hard stop the group and proceed with the mission as soon as the time limit is hit or
soft stop and complete the group one last time.

12

Tasks consist of an action which is a predefined constant.
Currently, the available actions are limited to the following:

e START
* WAYPOINT
e MEASURE

Most of these should be self-explaining except for START which is only required for the plan-

ning user interface to display the starting point and should be ignored by the synthesizer.
Apart from the action, a task also has a name which has to be unique because this is how the
transitions — which are covered in the next paragraph — identify their target and how groups can
specify their start and end task.
It also has a group which is mainly intended for displaying purposes, an optional object_id which
is required by the MEASURE action, a velocity which specifies how fast the robot should drive to
the next task’s position, an optional pose required by the WAYPOINT action and of course a list
of transitions which specify how to continue the mission.

Transitions are pretty straight forward. They only have a target which is — as already men-
tioned - the task id the transition points to and a list of conditions which have to be fulfilled in
order for the transition to trigger.

It is important to note that all of the conditions have to be met and it is also possible to leave
the conditions list empty. If the condition list is empty, the transition is unconditional.

A task can have only one unconditional transition and it also should always have one unless it
is the mission’s end.

Regardless of where the unconditional transition is located in the list, it is only executed if no
other transition can be made.

Conditions consist of a type, an id, an object_id and two optional parameters, namely param1
and param?2.
As of now, the type can have one of the following values:

| Type | Required Parameters | Expression
MEASURED VALUE LESS object_id, param1 val(object id) < paraml
MEASURED VALUE GREATER object_id, paraml val(object id) < paraml
MEASURED VALUE WITHIN | object id, param1, param2 | paraml < val(object id) < param2

Table 3.1.: The different condition types.

3.3 User Interface

Another important aspect is the displaying of information and controls for user interaction.
The displayed elements should be limited to the most necessary and grouped by their type in
order to keep the user interface as clean and intuitive as possible.

Elements that are not used frequently during normal usage should be hidden through either an
expandable section or a popup opened by a button.

13

To maximize the use of available space, the information, and basic controls should be ren-
dered as an overlay on top of the 3D-view of the planned mission.
Besides, this also gives the user interface a nice modern and sleek look.

v ExampleMiss
START
vRoundwalk

WAYPOINT 1

WAYPOINT 2 \‘““ \“")wa

WAYPOINT 4 A \1\"
]

“I‘VI

\“q!‘ ‘.ﬂ\ 'l P

‘|Ilii=‘ ‘i&nt' Sesld
Y A\D

-&

Figure 3.4.: A concept of the user interface.

Figure 3.4 shows the concept of this overlay.
In the top left, the planned mission is displayed.
It consists of a START followed by a group called 'Roundwalk’ consisting of four waypoints.
The currently selected task WAYPOINT 3 is highlighted using the accent color — see 3.4.
Single groups like Roundwalk or the mission as a whole can be collapsed if not needed.
The area used to display the mission can grow up to a third of the vertical space. If it exceeds
that limit, it becomes scrollable.

In the bottom left, the available tools are displayed. Tool 1 is the currently active tool which
is highlighted by using the accent color as the background.

In the top right, we have the floor selection with the second floor being highlighted as the
currently selected option. To the left, we have two buttons. The left one opens a menu with all
checkpoints for easier navigation and the right one opens a settings menu where i.e. the buttons
to create, load and save a mission can be found.

Checkpoints are hidden in a menu even though they are an important part of mission planning
because there are just too many of them to display at all times.

Finally, a button to start the currently planned mission is located in the bottom right corner.
If the node responsible for executing the planned mission is not available, the button should
change to a ’Save Mission’ button and only store the mission for later use.

14

3.4 Design

A small glimpse of the design was already shown in figure 3.4.

In this section, the underlying design considerations and choices are detailed.

The three key aspects kept in mind for each and every design choice were Usability, Intuitive-
ness, and Responsiveness.

Another key aspect of choosing the right design was Karim Barth’s Bachelor Thesis 'Develop-

ment of a User Interface for Supervised Inspection using mobile Robots in challenging Environ-
ments’ [8] considering his supervision user interface and the planning user interface introduced
in this thesis are part of one user experience: The planning and execution of missions in the
context of the ARGOS challenge.
When starting the mission the GUI (Graphical User Interface) switches to the supervision user
interface for the execution of the mission and because changing the planned mission during
execution is a requirement, the supervision user interface also features a button to switch back
to the planning user interface.

This, of course, means that for a good user experience our interfaces should have a consistent
look.
In the optimal case, the user will not even notice that they are two separate user interfaces.
To achieve such a unified look, definitions for the most common design resources — i.e. colors,
fonts, margins and paddings etc. — were created.

A sense of Responsiveness is created by using different background colors and/or in some
cases foreground colors on all controls that support user interaction for each state — with the
states being: default, mouse-over, mouse-pressed and for controls that can be toggled additionally
a checked state.

Good Usability is created by limiting the at-all-times-visible controls to only the most impor-
tant. Not frequently used controls are only displayed when needed and can be reached through
as few button clicks as possible.

,A designer knows he has achieved perfection not when there is nothing left to add,
but when there is nothing left to take away.”

— Antoine de Saint-Exupéry. Terre des Hommes. 1939

Intuitiveness, on the other hand, is not easy to quantify.

In an effort to make the interface as intuitive as possible, the used icons and button texts should
be very expressive.

However, as a developer, one can only create an interface in a way oneself finds intuitive, which
is not necessarily what someone else would find intuitive.

To make sure other people feel the same, feedback and testing by as many individuals as possible
is required.

15

4 Software

4.1 Implementation

In the following sections, details about the implementation of the planning user interface are
provided.

It uses RViz as a base for its visualization and is implemented as a set of RViz plugins, ROS nodes,
and ROS services.

4.2 General Displays, Tools and View Controllers

4.2.1 Mouse View Controller

The Mouse View Controller is a View Controller plugin, which — as mentioned in section 1.4 —
controls how the user interacts with the camera.

It is based on the Animated View Controller — developed by Adam Leeper[10] — which provides
methods to move the camera slowly to a given location instead of jumping there instantly.
Considering that RViz is actually meant to be a visualization tool, it comes as no surprise that
the default View Controller plugins only allow to either look at a fixed focus point that is orbited
by the camera or a fixed camera where only the orientation can be changed.

RViz does allow to move within the 3D-scene, but it’s far from intuitive and simple.

However, for a planning user interface the camera movement within the 3D-scene is an im-
portant part.
In order to make it more intuitive, the MouseViewController was created.
It allows using the mouse to control the camera by moving near the edges and has two modes
that can be enabled or disabled using keyboard shortcuts.

Mode Description Shortcut
Auto-Lock | The mouse is locked within the RenderPanel® but can | Ctrl + A
escape if the velocity is high enough. It will automati-
cally be locked again upon reentrance.

Locked The mouse is locked within the RenderPanel and can | Ctrl + L
not escape it. If it tries to leave, it is moved back to the
closest point within the RenderPanel.

Table 4.1.: The different lock modes supported by the Mouse View Controller.

In both modes whenever the mouse comes close to the border of the RenderPanel, the camera
moves in the corresponding direction — which depends on the camera orientation.

1 The RenderPanel is the area in which the 3D-scene is drawn.

16

The width of the area in which the mouse triggers camera movement as well as the maximum
camera velocity can both be adjusted using RViz Properties.

Though, the name Mouse View Controller is a bit misleading because it does not solely accept
mouse input but also supports camera movement using the arrow keys.

The movement speed can be doubled by holding the shift key while moving.

This functionality is implemented by installing an application-wide Qt event-filter.
It evaluates the arrow keys and keeps the mouse within the RenderPanel.
However, the movement itself is done separately in the plugin’s update method that is called
every time the 3D-view is updated and passed the elapsed time since the last update, which
allows for a smooth camera movement.

4.2.2 Tool Selection Display

The Tool Selection Display is a Display plugin which extends the OverlayDisplay that will be
introduced in section 4.3.

As shown in figure 3.4, it displays the available tools as radio buttons in the bottom left of the
screen and highlights the currently selected tool.

It does this by querying the available tools upon initialization using the rviz::ToolManager and
connecting to the Qt signals that are emitted whenever a tool is selected, added or removed.

This display was added for three reasons:
Firstly, the operator does not have to leave the RenderPanel in order to select a tool, which
greatly improves the usefulness of the Mouse View Controller.
Secondly, we use the available display space more efficiently and get approximately 30px more
vertical space or roughly 3% on a 1080p monitor.
And lastly, it blends in better with the overall design.

4.2.3 UMAD Floor Control

The UMAD Floor Control is also a Display plugin extending the OverlayDisplay.

It shows floor icons stacked in the top right corner of the RenderPanel and communicates with
a background node that is responsible for publishing only the currently selected floor and all
floors below it using service calls.

4.2.4 Robot Navigation Tool

The Robot Navigation Tool is a Tool plugin.

It allows placing a robot in the 3D-scene with a given orientation that can be set by using the
scroll wheel.

The target position is obtained using a method of the SelectionManager which takes a 2D-point
- in this case, the position of the mouse cursor — and returns the corresponding 3D-point of the

17

object that is rendered topmost at the given position.

When the tool is active, it displays a preview of the robot at the given position and orientation,
so that the user can see beforehand if the waypoint can be reached or collides with the site.
On mouse click, the pose consisting of the position and orientation is published to the topic:

/argo_robot_navigation_tool

This allows it to be used to set waypoints for both the planning and supervision.

4.2.5 Place Obstacle Tool

The Place Obstacle Tool is a Tool as well.

It allows adding an obstacle to the UMAD site manually.

As in 4.2.4, the 3D-point corresponding to the 2D cursor position is obtained using the Selec-
tionManager.

On the first mouse click, the start of the obstacle is set, the second click sets the end and places
a roadblock from start to end.

The placed obstacle is added to the world model using a service which currently only supports
obstacles as single points without information on their size or shape.

However, a new obstacle server is planned and once it is implemented, the tool will be updated
accordingly.

18

4.3 Overlay

4.3.1 Rendering the Overlay

As mentioned in section 3.3, all information that can be displayed as an overlay should be dis-
played as an overlay.

Unfortunately, RViz does not provide a simple method to display information at fixed positions
in the 3D-view.

To overcome this a solution had to be found.

Various methods to achieve the goal of overlaying information on top of the 3D-scene were
investigated. All were based on the same method of drawing on top of the 3D-scene using the
aforementioned OverlayManager provided by OGRE3D.

To initialize the overlay, first an Ogre::Overlay* and Ogre::OverlayContainer* are created using
the OverlayManager.

The container is set to span across the entire scene.

Then an Ogre::MaterialPtr is created and linked to the container.

Lastly, the container is added to the overlay.

Now, whenever the overlay is drawn, the size of the RenderPanel responsible for rendering the
3D-scene is obtained and if it changed, a new texture with the given width and height is created
and applied to the Ogre::MaterialPtr.

The texture buffer is obtained, locked and cleared. Then, a QImage is created on the now empty
texture data.
Finally, the controls are rendered inside the QImage and the buffer is unlocked.

The first attempt to simply render Qt inside the QImage worked pretty well after some tweak-
ing. This would have been the preferred approach because it would allow using an existing and
very powerful application framework.

However, the mouse and keyboard interaction did not work at all.
After a week of trying different methods to pass the mouse and keyboard interaction to the
overlay controls, the approach described in the following was used instead.

The actual implementation is now a lightweight library that was developed as part of this
thesis.
It uses some components of Qt and the Boost libraries because they are used by RViz and there-
fore available without additional overhead.

19

4.3.2 Structure

As shown in figure 4.1, all elements are sub-classes of the OverlayElement class.
It provides some basic properties necessary for all kinds of elements.
Panels and controls are additionally sub-classes of the OverlayUiElement class.

The reason for this is explained in 4.3.4.

OverlayElement

= tag: boost::any

= width: int

= height: int

= pen: boost::optional<QPen>

= backgroundBrush: boost::optional<QBrush>
parent: OverlayElement *

visible: bool

OverlayStateManager

= recursive(): bool

_measure() : QSize

_measure(available_size: QSize): QSize
_draw(painter: QPainter &, target_rect: QRect): void
bounds(): QRect

effectivePen(): QPen

effectiveBackgroundBrush(): QBrush
handleMouseEvent(event: OverlayMouseEvent *): bool
invalidateLayout()

measuredSize(): QSize

onMeasure(): QSize

onMeasure(available_size: QSize): QSize
onDraw(painter: QPainter &, target_rect: QRect): void

bbbl ol

= state(): string

= goToState(state_id: string): void

= getProperty(name: string[, state_id: string]): boost::any

= hasPropertiesForState(state_id: string): bool

= hasProperty(name: string[, state_id: string]): bool

= setProperty(name: string, state_id: string, value: boost::any): void

OverlayUiElement

= horizontal Alignment: Enum

= verticalAlignment: Enum

< —— = padding: QMargins

= margin: QMargins

= stateManager: OverlayStateManager

@ onStateChanged(new_state: string): void

A

OverlayPanel

= children: vector<OverlayUiElement *>

= addChild(child: OverlayUiElement *): void

= insertChild(child: OverlayUiElement *, index: int): void
= removeChild(child: OverlayUiElement *): void

= removeAllChildren(delete_reference: bool): void

| Controls, Buttons, etc..

Figure 4.1.: Part of the structure of the overlay’s elements.

20

4.3.3 OverlayElement

The width and height are pretty straight forward and represent the desired width and height of
the element, which can also be set to the constant Auto with the value -1. If the width or height
is set to Auto, it is determined by the content of the element.

The tag is just a general purpose field that can be used to associate any kind of information with
the control.

Pen and background are the foreground and background of the element.

As the alert reader might have noticed, these properties use the type boost::optional to store
their values. This is because they are meant to propagate down the element tree.

When drawing, the element always calls the effectivePen() and effectiveBackgroundBrush() meth-
ods.

As depicted in figure 4.2, these methods check if the boost::optional has a value and if not, they
check if it has a parent. If the element has a parent, it is asked for its effective value, otherwise,
a default value is returned.

Has value?

Yes

Has parent?

No

Ask parent (Use default value J

:

Figure 4.2.: How the effective value of the pen and background property is determined.

The OverlayElement also defines a few functions used to render and interact with the ele-
ment.
The handleMouseEvent(...) method takes a mouse event and returns a boolean indicating
whether it consumed it or not. If it consumed the event, all future events will first be sent to
the consuming element until it returns false or the event got canceled - i.e. because an element
with a higher priority took the event.
For the sake of readability, the mouse functions in the figure were reduced to only this most
important and generic one. However, there are of course a few more handlers including the
most common types of interaction: mouse over and mouse pressed.

21

For the rendering, the element has to first determine its size before actually drawing it.
For this, there are two _measure functions. One that has no parameters and returns the min-
imum desired size of the element and another one that is given the available size and returns
the size it wants.
These methods are not virtual but call the protected virtual onMeasure methods.
This is because they also handle caching the result for better performance.
It is assumed that the measured size will not change if the available size stayed the same and
the layout was not invalidated by calling the invalidateLayout method, which invalidates the
layout of the element and propagates to all parent elements.
Also, they start with a’ ’ to mark them as internal methods that should only be called if the
developer knows exactly what he is doing.
Though, unless one is developing a new primitive control!, calling this method is almost always
unnecessary and may result in unexpected results.
It should also be noted that the measure(QSize) method allows the passing of the constant
INT MAX as width or height, to indicate that the element may take as much space as it needs.
However, the onMeasure(QSize) method is not allowed to return INT MAX.

Finally, the element is drawn by calling the _draw method, which internally calls the protected
virtual onDraw method and makes sure the element is not drawn if it is not visible and saves
the provided QRect as the bounds of the element. The bounds are required internally for the
interaction to determine if the mouse is over an element.

4.3.4 OverlayUiElement

As seen in figure 4.1, all overlay controls inherit from another class OverlayUiElement that in-
herits from OverlayElement.

The reason for this additional level in the hierarchy is that there may be elements that are ren-
dered in the overlay but not part of the main element tree.

For example, the Popups covered in section 4.3.7. They are meant to be rendered on top of the
overlay and are not part of the element tree.

To ensure that these elements can not be added to the element tree, the class OverlayUiElement
was added, which also adds some properties and methods that are only required for elements
that are part of the element tree.

The horizontalAlignment determines whether the element is placed on the left, right or
stretches to the available size if there is more horizontal space than it needs.
verticalAlignment is the equivalent of horizontalAlignment for the vertical space.

The padding and margin properties determine how much free space should be reserved on the
in- and outside of the element’s border.

As depicted in figure 4.3, the padding is part of the element and has to be included in the mea-
surements done in the onMeasure methods of the element itself. The margin, on the other hand,
is not part of the element and is handled by the parent element.

Lastly, the stateManager will be covered in section 4.3.5.

1 See section 4.3.8

22

Content

Figure 4.3.: The effect of margin and padding on the layout.
The black rectangle marks the border of the element.

All basic elements like OverlayText, OverlayButton etc. inherit from this base class as well as
the OverlayPanel which is a base class for the different layouts introduced in section 4.3.6.
The controls will not be covered in this thesis as they are essentially behaving in the same way
as they do in other application frameworks.
There are primitive controls to display texts, rectangles, images, buttons, sliders, radios etc.
The event system is based on Qt signals and slots —i.e. to connect to the clicked event of a button,
a slot matching the signature of the signal has to be created in the receiving class and connected
to the clicked signal of the button.

4.3.5 OverlayStateManager

The OverlayStateManager is responsible for managing the state of the element.

States are represented as strings, which makes them easily extensible.

For each state, a key-value-pair consisting of the property key and a value for the property can
be set.

If the element supports the key and is currently in the given state, it will replace its current
value of the given property by the value that is stored in the OverlayStateManager.

This allows for a very flexible change of the element’s properties — i.e. changing the background
brush to a prominent color if the element is in a selected state.

5 B A B

Default Mouse Mouse Checked
Over Pressed

Figure 4.4.: An example of how the different states can be used to visually represent an ele-
ment’s state.

The predefined states include default, mouse-over, mouse-pressed, checked, checked-mouse-over
and checked-mouse-pressed.

23

State changes are propagated downwards on most controls. For example, if a button changes
to its mouse-over state, the child element and its potential element tree also change to the mouse-
over state.

4.3.6 Panels

Basically, the overlay’s heart as they control how the elements are arranged and also manage
most of the mouse interaction.

OverlayPanel

The most basic panel, which is also shown in figure 4.1, and the base for all other panels, is the
OverlayPanel.

Unlike the OverlayElement and the OverlayUiElement, it is not an abstract class but actually a
fully functioning panel.

It provides methods to manage its children and basic mouse interaction.

The minimum size is simply the minimum size of its biggest element.

Elements can be aligned and have a margin to keep distance to the panel’s borders.

Though, they do not interact with each other.

OverlayStackPanel

One of the most important panels for UI design as it allows to simply stack elements horizontally
or vertically.

When measuring, the OverlayStackPanel passes its child depending on its orientation either a
width (Horizontal) or a height (Vertical) of INT MAX.

To keep a consistent amount of free space between each element a spacing can be set.

OverlayGridLayout

The most complicated but also most powerful panel of the three panels provided by this overlay
library.

It allows creating a grid layout with a set of row and column definitions. Row and column
definitions are structs with a double indicating the height / width, a unit, a minimum and a
maximum height / width.

The different units are explained in table 4.2.

For each child, the row and column but also a row-span and a column-span can be specified.
The layout is calculated by first setting all calculated widths and heights to zero.
In the next step, first, the Pixel rows and columns are calculated since their heights and widths
do not depend on any other factor.

24

Mode Description

Auto The row / column will grow to fit its content.

The value of the double is ignored.

Pixel The row / column will have the value of the double as height / width.

Weight | The value of the double is the weight, the row / column has when the remaining
space is distributed.

For example, if there are 300px left after processing the Auto and Pixel rows and
row 1 has a weight of 2.0 and row 3 a weight of 1.0, row 1 will be 200px high and
row 3 will be 100px high.

Table 4.2.: The different units of the row and column definitions.

After that, in a loop the Auto cells are updated and the remaining space is distributed between
the Weight cells.

The loop repeats as long as the layout changes with a maximum of 10 times before printing a
warning and stepping out of the loop.
This is because depending on how much space in width or height a cell can actually get its
desired size might change.
For example, a text can be wrapped, but when first measuring the width and height of the final
cell is not known and it will return the width and height of the text if written in one line.

Now, after we have determined the first layout, we go back to the text element and this time
we know that it will not get enough horizontal space to write the text in one line, which means
it has to increase its desired height.

The maximum attempt count of 10 was deemed a good trade-off between performance and
getting the desired layout. It generally should not happen that the layout changes 10 times.

Once the layout is calculated, every element is measured again with the final size of the rows
and columns it occupies.

OverlayltemsGrid

The previously introduced panels already cover a broad range of usage scenarios.

What’s still missing is a panel that can display a variable amount of elements not wide enough
to be displayed in an OverlayStackPanel.

For this reason, the OverlayItemsGrid was created.

It stacks elements horizontally or vertically depending on its orientation property and whenever
a row or column is full, a new one is added.

The size of the panel’s children is determined by measuring their minimum size and passing it
to their measure(QSize) method.

25

4.3.7 Popups

They are not part of the element tree, which is why they only inherit from OverlayElement but
not OverlayUiElement.

Popups are displayed on top of the other overlay elements and have a higher priority with re-
gard to mouse events.

Basically, popups are just a container for a separate element tree. They all have a common base
class, the OverlayPopupBase which handles the basic functionality like measuring and position-
ing the content, as well as to provide basic mouse handling.

The base functionality includes a boolean property indicating whether or not the popup is
light-dismissable — which, if true, means that the popup closes if the mouse clicks anywhere
outside of its bounds.

Mouse events that are within the popup’s boundaries are passed to the popup’s content and
handled accordingly as described in section 4.3.3.

However, if the mouse event was within the popups bounds, the popup will always handle the
event in order to prevent it from propagating to the elements below.

As for the rendering, the popup can be set as modal, which means it will fill the entire overlay
outside of the popup’s boundaries with a given modal color and block any interaction with the
rest of the user interface.

A popup can also be set to track a given point using a PointTracker.
There are a few predefined PointTrackers that, for example, allow to track a given point in the
3D-scene on the RenderPanel or to track the position of the RenderPanel’s center.
This allows popups to appear and stay next to elements in the 3D-scene, which is a requirement
regarding Intuitiveness when displaying options related to that object.

In our scenario, this allows to show information about a checkpoint on the UMAD site and to
create a measurement task of the given checkpoint when it is clicked.

Contrary to the user interface elements, popups also have an anchor point that can be set to
one of the following values:

AnchorTopLeft
AnchorTopRight
AnchorBottomRight
AnchorBottomLeft
AnchorCenter
AnchorAuto

The anchor point determines where in the popup the point provided by the properties top and
left — or the point returned by the PointTracker — is located.
Most of these are self-explanatory except for AnchorAuto which means that the popup will be
displayed as it fits.
It will prefer to use the top left corner as the anchor but will adjust accordingly if it would not

26

fit on the screen entirely, and it is not limited to one of the five other anchor points.

The point has to be within the popup, though.

Meaning, if the popup is set to track a point in the 3D-scene and the camera moves far enough
so that the point in the 3D-scene is not visible anymore, the popup will also be out of the screen
either partly or entirely.

4.3.8 OverlayWrapperControl

At one point in the development of the overlay, all basic controls that were required had been
developed and what was missing could be created using a combination of existing controls.

To make the creation of such controls that internally just wrap a couple of other controls easier
and cleaner, the OverlayWrapperControl was created.

It basically has a child that is the actual control and forwards all events and property getters
and setters to the child element.

The wrapping control can then simply inherit from this OverlayWrapperControl, pass it an
element or in most cases an element tree and add functions that provide additional functionality
based on the used controls.

For example, a panel that allowed to expand and collapse a section was needed.
To realize this functionality, the OverlayExpandable — see figure 4.5 — was created, which inherits
from OverlayWrapperControl and internally creates an OverlayGridLayout with two rows and
one column.

The first row contains an OverlayButton, containing an OverlayStackPanel with two children
— an OverlayText for the open and close symbol and another OverlayText for the heading of the
OverlayExpandable.
The second row contains the actual child that can be expanded and collapsed.

Finally, the OverlayExpandable connects to the signal that is emitted by the OverlayButton
whenever it is clicked and switches its state between open and close.
If it’s set to close, it simply sets the child’s visible property to false.

O Lo
» General v General

Load Mission

Closed Open

Figure 4.5.: An example of how the overlay expandable can be used.

27

4.4 Internal Representation of the Mission

Contrary to the structure in chapter 3, I will first introduce the internal representation of the
mission before continuing with the visual representation.

MissionSpecification

= tasks: MissionTask[]
= groups: MissionGroupl[]
= current: string

MissionGroup MissionTask
& name: string = action: uint8
= start: string = name: string
= end: string = group: string
= repeat_count: uint§ = object_id: string
= repeat_duration: uint32 = velocity: float32
= pose: geometry_msgs/Pose
= joint_states: sensor_msgs/JointState
= transitions: MissionTransition][]
T
I
|
MissionTransitionCondition \l/
- sze: uint8 MissionTransition
= 1d: string < - -~ target: string
= paraml: float32 S - -
: = conditions: MissionTransitionCondition]]
= param2: float32

object_id: string

Figure 4.6.: The ROS message structure for the mission specification intermediate language.

The mission is internally represented as a set of ROS messages — as shown in figure 4.6.
Using ROS messages has a number of advantages.
For example, the existing ROS infrastructure can be used to send the mission to other nodes or
to save and load it from the hard drive.
The biggest advantage of this approach, however, is that it is language independent.
There are ROS APIs to send, receive, store and load messages for most popular programming
languages including C++ and Python.
Lastly, the biggest advantage over creating an own message channel is, of course, the ROS in-
frastructure being already widely used and very stable.

There are of course some restrictions such as missing support for recursive message defini-
tions which means MissionGroup cannot have a member subgroups as a vector of MissionGroup.
Considering this is the only restriction imposed by using ROS messages, the concept was simply
adapted and the hierarchy of groups is now expressed by using a slash ’/’ in the name.

For example, if Beta is a subgroup of Alpha, the name of Beta would be ’Alpha/Beta’.

The types used are special types for ROS messages, which are mapped to their language equiv-
alent upon receiving or loading the message.
The messages depend on two other packages: geometry msgs and sensor_msgs.

28

To communicate the target pose of a WAYPOINT, the Pose message from the geometry msgs pack-
age is used. It consists of a point in 3D space and an orientation.

The joint_states were actually not part of the concept but added later on for the supervision
user interface, that uses the same message infrastructure for semi-autonomous actions.
A JointState message consists of a list of strings with the names of the joints the JointState has
values for, and float64 lists for the position, velocity, and effort of each joint.

4.5 ROS Nodes

4.5.1 Floor Publisher Node

The Floor Publisher Node is responsible for publishing the floor model.
To make it more flexible, the node can be configured using the parameters described in table 4.3.

Name Description Default Value
frame The frame set in the header of each floor world
marker.
publish_topic The topic the floor MarkerArray is pub- | argo umad floor model
lished to.

publish_current topic | The topic where information about | argo umad floor model
which floor is currently selected is pub-

lished to.
service_topic As the name indicates, the service is ad- | argo_umad_show_floor
vertised on this topic.
floors_number The number of floors. 6
scenario_name The scenario determines which models umad_default

to load. Currently, this can be either the
UMAD site or a model of the local test
site at TU Darmstadt.

Table 4.3.: The parameters of the Floor Publisher Node

It publishes the floors up to the currently selected floor as a visualization _msgs/MarkerArray
message, and an argo _robot_control_ui_msgs/ArgoCurrentFloor message containing the 1-based
index of the current floor and a maximum z-value which tells Subscribers up to which height
they should show objects.

If the highest floor is selected, the maximum z-value is set to the constant FLT MAX.
Additionally, it also provides a service to change the selected floor.

4.5.2 Argo Interactive World Model Visualization Node

The Argo Interactive World Model Visualization Node retrieves all points-of-interest using the
service worldmodel/get object_model and subscribing to updates on the worldmodel/object topic.

29

The points-of-interest are parsed and filtered for checkpoints.
Checkpoints are added to a map, which maps them to their name.
This is done to allow the service advertised as interactive_world_model/get world_object to
quickly check if it contains a checkpoint with the name that was passed in the request and
return the corresponding hector worldmodel msgs::Object message.

Furthermore, for the three different types of checkpoints — valve, dial gauge, and liquid level
gauge — an InteractiveMarker containing a model of the checkpoint type, enclosed in a transpar-
ent box marker to increase the clickable area, is published — see figure 4.7.

Figure 4.7.: The models for the different types of checkpoints on the site.
On the liquid level gauge, the mouse was hovered over the checkpoint to show the
enclosing interactive button marker.

4.5.3 Back-end Planning Node

The Back-end Planning Node is an ROS node responsible for handling the mission.
It provides Services to:

* Create a new mission

* Save and load an existing mission
* Add, update or delete a task

* Add, update or delete a group

* Set the current task

Whenever the mission changes, it is published as an argo_mission_msgs/MissionSpecification
on a latched topic?.
Internally, the mission is handled by a class called MissionPlan which handles the Service calls
and the generation of the MissionSpecification message from its stored data.

For better performance, pointers to the tasks and groups are stored redundantly.
Tasks use a double-linked list>.
Groups are stored in a struct with a vector of the tasks contained in the group.
Additionally, the MissionPlan features an std::map for each the Tasks and the Groups which
maps these values to their names as keys.

A latched topic always stores the latest message and sends it to new subscribers.

3 Every element of a double-linked list has a pointer to the next and the previous element in the list.

30

4.6 Visual Representation of the Mission

The visual representation of the planned mission was implemented as Display plugins for RViz.
It is added as one Display called PlanningDisplay which internally creates instances of the other
required Displays and handles the communication with the background node as depicted in fig-
ure 4.8.

RobotNavigationTool sends Pose

AddGroupDialog

PlanningOverlayDisplay
WorldObjectPopup

Measure button

TaskPopup b

PlanningDisplay

Add waypoint

G

Set as current button

Delete task button

e
EditMissionPanel

Add measurement

ArgoMissionPlanner
—

Create task

)

|

—

Delete task

Delete task requested

Current changed

Task selected

—

)

Select task

G

Display tasks I|<
[S —

ManageGroupsPopup

‘Add group button

‘(Visualize mission and transitions

| —

L
-

——= Create group

Add group requested

[

)

Delete group requested

Publish mission }e

—

-

———

[—

Delete group button

J

TabMenu

-

New mission button

New mission requested

Delete group

-

New mission

| S —

Save mission button

Save mission requested

———————

Save mission

[

-

e

Load mission button

[

———

Load mission

Load mission requested

R

-

Figure 4.8.: The structure of the PlanningDisplay components.

Starting from the top to the bottom, the PlanningDisplay is responsible for combining the
whole functionality into one Display.
It basically acts as a bridge between the back-end node and the different tools and overlay con-
trols.

31

For example, if the Navigation Tool sends a Pose, the Planning Display wraps the pose into an
AddTask request in order to add a new waypoint to the mission.

It is also responsible for displaying the current mission.

This is achieved by first iterating through all tasks and displaying the robot where it is expected
to be when actually executing the mission.

When displaying a WAYPOINT, the display creates a RobotStateVisualization, provided by the
moveit[11] package, moves it to the position set in the pose property and rotates it according to
the orientation.

In the case of a MEASURE, the robot pose for the measurement has to be obtained from the ROS
parameter server.

However, because the measurement position is relative to the checkpoint location, the location
of the checkpoint has to be retrieved first using the GetWorldObject service provided by the Argo
Interactive World Model — see 4.5.2.

To distinguish the robot that is currently selected, an alpha of 0.3 is applied to all other robots.

Figure 4.9.: Visual representation of the tasks.

As of now the robots are displayed but the user will not be able to tell which paths the robot
is going to take, and more importantly in what order the robot will visit these points.
Hence, the next step is to visualize the transitions.
Visualizing the transitions is done in a separate loop after the robots are visualized to make sure
the tasks already exist and there are no valid transitions that point to tasks that were not visu-
alized yet and therefore there is no information available about where to draw the transition.
To give the best possible estimation of what the robot will actually do, the Planning Display uses
a service provided by Mark Prediger’s Topo Planner. The same planner is also used during the
actual execution of the mission, therefore the displayed path should be reasonably accurate for
simpler scenarios where the planned path is not in reality blocked by a previously unknown
obstacle.
If the planner fails to find a path between the two tasks, as a fall-back an arrow pointing from
the origin task to the transition target is drawn instead.

32

At this point, the mission visualization is very basic but complete.
What is still missing, is the interaction.
Interactivity is added using a default RViz Display plugin called InteractiveMarkerDisplay in com-
bination with an InteractiveMarkerServer.
Using the InteractiveMarkerServer the PlanningDisplay publishes box markers for the robots,
transitions are already displayed as markers, thus, they are simply wrapped by an Interactive-
Marker.
The interactive markers are set to interact as buttons which means upon clicking on such a
marker, a message is published to a topic the PlanningDisplay is subscribed to, the PlanningDis-
play handles the click and triggers a corresponding action in the PlanningOverlayDisplay.

Finally, the PlanningDisplay also uses the PlanningOverlayDisplay which provides most of the
overlay controls necessary for editing the mission.
It is responsible for displaying and handling almost all overlay controls shown in figure 4.10
except for the tool selection in the bottom left and the floor selection in the top right that are
both separate Display plugins covered in section 4.2.
As in the concept, the mission is displayed in the top left. The currently selected task is high-
lighted in the accent color and can be chosen by clicking on the task’s name.
The Manage Groups button opens a popup listing all groups and presents the option to add, edit
or delete groups.
Adding and editing a group is done in a separate Qt dialog because the overlay that was devel-
oped specifically for this thesis does not support keyboard input.
Clicking on one of the buttons in the top right will open a pop-out menu providing options that
are not frequently used.
On demand, for example, if the interactive marker for a robot is clicked, the overlay also shows
popups that provide the option to edit or delete tasks and transitions.
These popups can track the position of a 3D point on the screen and stay at that point even if
the camera moves.

uuuuuuuuu

Reset | Mouse unlocked! Ctrl+A: Toggle Auto-Lock. CtrlsLi Toggle Lock.

Figure 4.10.: The final visual representation of an example mission.

33

5 Evaluation

To evaluate the key aspects Usability, Intuitiveness, and Responsiveness, a user study was done in
collaboration with Karim Barth.

We collaborated in this user study to also evaluate our common design and to get more repre-
sentative results by having a larger base of study participants.

Usually, there are recommended practices and metrics for user interface evaluations[12].
However, considering this is a rather small study with only 15 participants due to the conduc-
tion of the study for a single participant taking between 30 minutes and 1 hour, the participants
being mostly friends and family and the software used for executing the mission being in a pre-
alpha state, the process was a bit simplified, and while the results provide a good indication,
they are not representative.

It should also be noted that the operator in the ARGOS challenge is going to be someone with
domain experience in oil and gas production sites.
This is not the case for any of the participants.
One participant, however, actually had experience in operating mobile robots.

5.1 Conduction

The study participants were instructed to create the mission according to the script given in
figure 5.1.

Mission Protocol #2

Ju—

. Set a starting point in front of the UMAD site

2. Let the robot patrol the first floor in circles for 10 minutes

+ Hint: At least 3 robots are needed

Check the checkpoint #14

Add checkpoint #2 after checkpoint #14

. Delete the measuring of checkpoint #2 and add the checkpoint #2
before checkpoint #14

6. Done!

QI

Figure 5.1.: The script for the mission planning evaluation.

The mission was designed to cover all features currently available:

* Creation of waypoints

* Navigation to checkpoints using the checkpoints menu
* Creation of measurement tasks

* Creation of groups to repeat a set of tasks

* Insertion and deletion of tasks

34

To create the mission, the participant had to first set the START in front of the UMAD site
model by using the Robot Navigation Tool (see 4.2.4).

Then, he or she had to place 4 WAYPOINT tasks in each corner of the bottom floor — 3 would
suffice as well if positioned properly, otherwise, the robot might choose to drive backward.

To repeat these waypoints for 10 minutes, the user had to create a group by clicking on the
‘Manage Groups’ button in the top left, which opens a popup where the user had to click ’Add
Group’.

This opens the dialog depicted in figure 5.2.

Name: [Roundwalk]

Start: | WAYPOINT 1 =
End: | WAYPOINT 3 -

Max Repeat Counkt: | 0
Set to zero For infinite repeats.
Max. Repeat Duration: | 00:10:00

Leave on 00:00 for no time limit.

| Add | Cancel

Figure 5.2.: The 'Create Group’ dialog.

Since a name was not specified in the mission script, any name could be used.
As the start and end of the group, the first and the last waypoint on the site had to be chosen.
Then, the maximum duration had to be set to 10 minutes.
Finally, the group had to be added by clicking ’Add’.

Next, the participant had to navigate to checkpoint #14 using the checkpoint menu in the top
right and add a MEASUREMENT task by first clicking on the valve checkpoint, which opens a
popup, then, clicking on the 'Measure’ button.

The same procedure had to be done for checkpoint #2.

To delete the measurement of checkpoint #2, the robot visualizing the MEASUREMENT task
had to be clicked to open a popup with options regarding the task.
In the popup, the 'Delete task’ button had to be clicked.

To add the checkpoint #2 before the measurement of checkpoint #14, the user could either
select the last WAYPOINT task of the patrol group in the mission summary in the top left or by
clicking on the robot visualizing the task and the ’Set as current’ button in the opened popup.
Lastly, the measurement of checkpoint #2 could be added again as described earlier.

35

The resulting mission is displayed in figure 5.3.

Figure 5.3.: A possible version of the mission created in the evaluation.

Afterward, they had to create and execute a simpler mission for the evaluation of the super-
vision user interface by Karim Barth[8].
Considering that the second part is not relevant for this thesis, it is not described in detail here.
Finally, every study participant had to fill out a form that can be found in the appendix [A.1].

5.2 Results

A summary of all results can be found in the appendix [A.2].

It took the 15 participants on average about 5Smin 28s to create the given mission.
The 7 participants who stated that they do play video games needed on average 50 seconds less
(5min 02s) than the 8 participants who stated that they do not play video games.
While the sample size is too small to draw authoritative conclusions, it indicates that using video
games as a source of inspiration made it easier for people with prior video game experience to
orient themselves, but it is not needed, considering that the difference was just 50 seconds or
around 15%.

All participants managed to create the given mission after a short introduction, which clearly
shows that the concept of this user interface works as intended.
On a scale from 1 (Strongly disagree) to 4 (Strongly agree) the statement "The user interface is
intuitive / easy to use’ was rated 3.2 on average, which is a good result.
Still, 20% slightly disagreed which indicates that there is room for improvement and ways to
improve the Intuitiveness should be investigated.

Regarding Responsiveness, the participants rated the statement 'The planning interface feels
responsive’ on the previously mentioned scale 3.53 on average with no one disagreeing.

36

As for the integration of the planning and the supervision user interface, the design was
deemed as consistent scoring a 3.47 whereas the statement 'The transition between planning
and supervision is seamless’ scored 3.33.

Additionally, the participants could make suggestions on how to improve the planning user
interface.
Most of these suggestions were already planned for future development.
For example, preventing the setting of invalid waypoints with the Robot Navigation Tool, and
better camera positions when looking at a checkpoint using the checkpoint menu.
However, there was also very valuable new feedback like the option to reorder tasks in the
planned mission using drag & drop.

37

6 Conclusion and Outlook

In this thesis, a more intuitive user interface for the planning of missions in the context of the
ARGOS challenge was introduced.

Aside from the RViz plugins that were developed specifically for this user interface, a general
purpose overlay with mouse support was created.
For the specification of mission plans and to provide an abstraction from the FlexBe automaton,
an intermediate language for missions in the form of ROS messages was developed.
To navigate within the 3D-scene, a ViewController that allows movement in the 3D-scene using
cursor locking and screen-edge camera movement or, alternatively, using the arrow keys was
developed.

As the user study in chapter 5 indicates, the user interface works as intended.
After a short introduction of only around 15 minutes as opposed to the 30 minutes given in
the 3rd competition, it was possible for users without detailed knowledge about the used robot
control software to create a mission in a relatively short amount of time.

As a next step, to improve the Usability and Intuitiveness of this user interface, the feedback
collected in the evaluation will be implemented.
In order to allow the creation of more complex missions, conditional transitions will be added.
Furthermore, the Place Obstacle Tool will be updated once the new obstacle server is available.

Additionally, the integration of the planning and the supervision user interface during execu-
tion of the mission will be improved.
For example, different approaches to better integrate information about the current state of the
robot and the execution state of the mission in the planning user interface will be investigated.

In conclusion, the user interface presented in this thesis provides the required capabilities for
a mission planner allowing for the intuitive and fast creation of industrial inspection mission
plans.

38

Bibliography

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Philipp Schillinger. “An Approach for Runtime-Modifiable Behavior Control of Humanoid
Rescue Robots”. MA thesis. Technische Universitaet Darmstadt, Department of Computer
Science (SIM), 2015.

Stefan Kohlbrecher and Oskar von Stryk. “From RoboCup Rescue to Supervised Au-
tonomous Mobile Robots for Remote Inspection of Industrial Plants”. In: KI - Kiinstliche
Intelligenz 30.3 (2016), pp. 311-314. 1ssn: 1610-1987. po1: 10.1007/s13218-016-0446-
8.

TOTAL ANR. “ARGOS Challenge - Rules of the 3rd competition”.

Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA Workshop
on Open Source Software. 2009.

Hyeong Ryeol Kam et al. “RViz: A Toolkit for Real Domain Data Visualization”. In: Telecom-
mun. Syst. 60.2 (Oct. 2015), pp. 337-345. 1ssn: 1018-4864. por: 10.1007/s11235-015-
0034-5.

OGRE - Open Source 3D Graphics Engine. URL: http://www . ogre3d. org/ (visited on
11/13/2016).

Péter Frankhauser. “ANYmal at the ARGOS Challenge”. In: Team LIO - ETH Z"urich. urL:
http://roscon.ros.org/2016/presentations/ROSCon%202016%20-%20ANYmal .pdf.

Karim Barth. “Development of a User Interface for Supervised Inspection using mobile
Robots in challenging Environments”. BA Thesis. Technische Universitaet Darmstadt, De-
partment of Computer Science (SIM), 2016.

Antoine de Saint-Exupéry. Terre des Hommes. 1939.

Adam Leeper. UrL: https://github.com/ros-visualization/rviz_animated_view_
controller (visited on 11/21/2016).

Sachin Chitta, Ioan Sucan, and Steve Cousins. “Movelt!” In: IEEE robotics & automation
magazine 19 (2012), pp. 18-19. 1ssnx: 1070-9932. po1: 10.1109/MRA.2011.2181749.

Melody Yvette Ivory. “An Empirical Foundation for Automated Web Interface Evaluation”.
PhD thesis. UC Berkeley, 2011.

39

http://dx.doi.org/10.1007/s13218-016-0446-8
http://dx.doi.org/10.1007/s13218-016-0446-8
http://dx.doi.org/10.1007/s11235-015-0034-5
http://dx.doi.org/10.1007/s11235-015-0034-5
http://www.ogre3d.org/
http://roscon.ros.org/2016/presentations/ROSCon%202016%20-%20ANYmal.pdf
https://github.com/ros-visualization/rviz_animated_view_controller
https://github.com/ros-visualization/rviz_animated_view_controller
http://dx.doi.org/10.1109/MRA.2011.2181749

A Appendix

List of Figures

1.1. An example of a mission planned inFlexBe. 1
1.2. The UMAD site where the competitionisheld. 2
1.3. The functional categories, taken from the 'Rules of the 3rd competition’[3] 3
1.4. The script of the 1% mission of the 3™ competition. 4
1.5. The different kinds of pluginsinRViz, 6
2.1. Mission Creation for Team LIO’s ANYmal. 9
3.1. Mission planning in strategic video games (Planetary Annihilation). 10
3.2. Anexemplary mission flow. 11
3.3. The message structure for the intermediate language. 12
3.4. Aconceptoftheuserinterface.. 14
4.1. Part of the structure of the overlay’s elements. 20
4.2. How the effective value of the pen and background property is determined. 21
4.3. The effect of margin and padding on the layout.

The black rectangle marks the border of the element. 23
4.4. An example of how the different states can be used to visually represent an ele-

MENUS STATE. v o e e et e 23
4.5. An example of how the overlay expandable canbeused. 27
4.6. The ROS message structure for the mission specification intermediate language. . 28

4.7. The models for the different types of checkpoints on the site.
On the liquid level gauge, the mouse was hovered over the checkpoint to show

the enclosing interactive button marker., 30
4.8. The structure of the PlanningDisplay components. 31
4.9. Visual representation of thetasks. 32
4.10.The final visual representation of an example mission. 33
5.1. The script for the mission planning evaluation. 34
5.2. The’Create Group’ dialog. o i i e e e 35
5.3. A possible version of the mission created in the evaluation. 36

List of Tables

3.1. The different condition types.. it it e e 13
4.1. The different lock modes supported by the Mouse View Controller. 16
4.2. The different units of the row and column definitions. 25
4.3. The parameters of the Floor Publisher Node 29

40

A.1 Survey

Argo Mission Planning and Supervision Survey
* Erforderlich

Mission Detail
To be filled by supervisor.

1. Planning Time *
Beispiel: 4:03:32 (4 Stunden, 3 Minuten, 32 Sekunden)

2. Supervision Time Start (Simulation) *

Beispiel: 4:03:32 (4 Stunden, 3 Minuten, 32 Sekunden)

3. Supervision Time End (Simulation) *

Beispiel: 4:03:32 (4 Stunden, 3 Minuten, 32 Sekunden)

4. Supervision Time Start (Realtime) *

Beispiel: 4:03:32 (4 Stunden, 3 Minuten, 32 Sekunden)

5. Supervision Time End (Realtime) *

Beispiel: 4:03:32 (4 Stunden, 3 Minuten, 32 Sekunden)

6. Result *
Markieren Sie nur ein Oval.

Q Success
() Failed

Q Techinical difficulties

7. Additional Info

General
To be filled by user

8. Please choose your gender:
Markieren Sie nur ein Oval.

C} Male
Q Female

41

9. How old are you?
Markieren Sie nur ein Oval.

() under 18
() 1825
() 2535
() 3555
() 55orolder

10. Do you have experience in operating mobile robots? *
Markieren Sie nur ein Oval.

() Yes
() No

11. Do you play video games in particular the genres Strategy or Multiplayer Online Battle
Arena? *

Markieren Sie nur ein Oval.

() Yes
() No

12. The time of the introduction was sufficient *
Markieren Sie nur ein Oval.

1 2 3 4

Strongly disagree Q Q Q Q Strongly agree

13. The transition between planning and supervision is seamless *
Markieren Sie nur ein Oval.

1 2 3 4

Strongly disagree O O Q O Strongly agree

14. The design of the planning and the supervision user interface feels consistent *
Markieren Sie nur ein Oval.

1 2 3 4

Strongly disagree Q Q D Q Strongly agree

Mission Planning

15. The user interface is intuitive / easy to use *
Markieren Sie nur ein Oval.

1 2 3 4

Strongly disagree Q Q Q Q Strongly agree

42

16. The planning interface feels responsive *
Markieren Sie nur ein Oval.

1 2 3 4

Strongly disagree Q Q Q Q Strongly agree

17. 1 had no problems creating the given mission *
Markieren Sie nur ein Oval.

1 2 3 4

Strongly disagree Q Q Q Q Strongly agree

Supervision

18. The user interface is intuitive / easy to use *
Markieren Sie nur ein Oval.

1 2 3 4

Strongly disagree Q Q Q Q Strongly agree

19. The meaning of the different operation modes is comprehensive and clear *
Markieren Sie nur ein Oval.

1 2 3 4

Strongly disagree Q Q Q Q Strongly agree

20. Was is obvious which operation mode you where in? *
Markieren Sie nur ein Oval.

() Yes
() No

21. Did the different accent colors facilitate your orientation? *
Markieren Sie nur ein Oval.

() Yes
() No

Additional

22. Do you have suggestions for improvement?

43

A.2 Survey Results

15 Antworten

Zusammenfassung

Mission Detail

Planning Time

00:08:14 00:07:19 00:03:52 00:07:49 00:04:29 00:03:03 00:06:05 00:04:31
00:00:47 00:04:40 00:08:28 00:07:33 00:06:56 00:04:42 00:03:37

00:_ :

Supervision Time Start (Simulation)

00:07:25 00:00:13 00:08:07 00:09:40 00:07:34 00:00:33 00:05:35 00:07:37
00:01:49 00:11:32 00:11:09 00:05:20 00:00:52 00:04:18 00:03:20

00:_ :

Supervision Time End (Simulation)

00:20:56 00:10:49 00:16:00 00:24:06 00:12:59 00:10:03 00:16:41 00:18:32
00:14:17 00:23:21 00:20:47 00:13:40 00:10:52 00:14:11 00:14:29

00:_ :

Supervision Time Start (Realtime)

00:14:02 00:00:57 00:14:38 00:18:35 00:13:35 00:00:59 00:09:49 00:13:39
00:03:15 00:21:54 00:20:09 00:23:40 00:03:07 00:08:12 00:06:36

00:_ :

Supervision Time End (Realtime)

00:41:12 00:43:21 00:29:54 00:48:57 00:33:30 00:19:26 00:31:10 00:34:30
00:21:40 00:46:06 00:38:56 00:45:30 00:43:06 00:28:15 00:29:00

00:_ :

Result
Success 12 80 %
Failed 0 0%
Techinical difficulties 3 20%

Additional Info

CP 14 konnte nicht gemessen werden
An der Treppe hangen geblieben

Roboter ist am Hindernis hangen geblieben, Verzégerung durch Desktopubertragung

44

General

Please choose your gender:

Male 8 53.3%
Female 7 46.7 %

How old are you?

under18 2 14.3%
1825 5 357 %
28,6%
. 25-35 1 71 %
3555 2 143%
55o0rolder 4 28.6%

Do you have experience in operating mobile robots?

Yes 1 6.7 %
No 14 93.3%

Do you play video games in particular the genres Strategy or Multiplayer Online Battle
Arena?

Yes 7 46.7%
No 8 533%

45

The time of the introduction was sufficient

IS

N

Strongly disagree: 1 0 0 %
2 0 0%

3 6 40%

Strongly agree: 4 9 60 %

The transition between planning and supervision is seamless

Strongly disagree: 1 0 0%
2 1 6.7 %

3 8 533%

Strongly agree: 4 6 40 %

46

The design of the planning and the supervision user interface feels consistent

Strongly disagree: 1 0 0%
2 0 0 %

3 8 533%

Strongly agree: 4 7 46.7 %

Mission Planning

The user interface is intuitive / easy to use

N W OO

-

Strongly disagree: 1 0 0 %
2 3 20%

3 6 40%

Strongly agree: 4 6 40 %

47

The planning interface feels responsive

[}

~

N

Strongly disagree: 1 0 0%
2 0 0 %

3 7 467%

Strongly agree: 4 8 53.3 %

I had no problems creating the given mission

10,0
7,5
5,0
2,5

0,0

Strongly disagree: 1 0 0%
2 1 6.7 %

3 3 20 %

Strongly agree: 4 11 73.3 %

Supervision

The user interface is intuitive / easy to use

Strongly disagree: 1 0 0%
2 0 0 %

3 5 333%

Strongly agree: 4 10 66.7 %

The meaning of the different operation modes is comprehensive and clear

Strongly disagree: 1 0 0%
2 0 0 %

3 7 467 %

Strongly agree: 4 8 53.3 %

49

Was is obvious which operation mode you where in?

Yes 15 100 %
No 0 0%

Did the different accent colors facilitate your orientation?

Yes 1 73.3%
No 4 26.7%

Additional

Do you have suggestions for improvement?

Navigation Tool: Unglltige Eingaben sollten unterbunden werden.
Teilweise schlechte Einsicht auf die site.

Checkpoint Reihenfolge in der Planung lI6schen oder per Drag and Drop verschieben kénnen; Eine
Kamera, die dem Roboter automatisch folgt; Im Supervisory Modus bei der manuellen Navigation
(Navigation Tool) eine Markierung setzen, damit ersichtlich ist an welche Stelle der Roboter fahren soll;
Bei den einzelnen Modi bei langem daraufbleiben der Maus eine kleine Infobox einblenden, was die
einzelnen Modi nochmal genau machen; Der Roboter sollte den Arm nach jeder Aktion automatisch
wieder einfahren, egal ob eine Aktion erfolgreich war oder nicht; Kameras am Roboter auf einer
horizontalen Ebene belassen (nicht schief, quer etc.); Bei den unterschiedlichen Kameraperspektiven
(wenn moglich) Gegenstande (Bsp. Stangen) im Sichtfeld verschwinden lassen bzw. durchsichtig
machen; Ich finde es umstandlich das Tool fiir die Positionierung des Roboters (Navigation Tool/Waypoint
Tool) fiir jeden einzelnen Wegpunkt neu auswahlen zu missen. Besser: durch das Klicken mit der Maus
(linke Maustaste) Waypoints setzen und automatisch verbinden; Exklusives Anzeigen der Stockwerke
mit Eingabeoptionen nur auf das ausgwahlte Stpckwerk beschrankt (damit es nicht passieren kann, dass
ich mich im zweiten Stockwerk befinde und den Roboter ausversehen ins erste Stockwerk setze); Bei der
Auswahl unterschiedlicher Tools die Auswahl mit einem Rechtsklick wieder aufheben; Im Planungsmodus
das Fenster vom Checkpoint durch einen Random-Klick in die Gegend wieder schlieRen oder die
Checkpoints nicht als eigenes Fenster, sondern beispielweise unten als dauerhaft angezeigte Leiste
einblenden.

Im Planmodus sollten die Einzelschritte einfacher zu bearbeiten und verschieben sein. Die Fenster im
Planmodus sollten sich schliessen wenn man in den Hintergrund klickt. Den Roboterplazierknopf zum
Navigieren ist leicht verwirrend. Eventuell vielleicht eine Kurzanleitung in die Fenster setzen(Aufrufbar
Uber Hilfe-Knopf). Kamera sollte Roboter verfolgen kénnen. Stockwerk sollen wechseln wenn Roboter auf

50

ein anderes Stockwerk fahrt. Was man in welchem Modus tun kann sollte eindeutiger sein, ansonsten
wirklich intuitiv geldst. Sehr einfache und verstandliche Oberflache!

CP teilweise nicht vollstandig sichtbar.

- Kontrast der CP Objekte teilweise zu niedrig. Blaue valve auf blauen Hintergrund. Graue auf grau; -
Eventuell CP Nummer am Objekt direkt anzeigen

Missionsplanung: Beim Anklicken einiger Checkpoints im Checkpointment ist der Kamerawinkel
ungunstig gewahlt. Hat man eine Mission an einen bestimmten Punkt gelegt lasst sich diese nicht mehr
verschieben. Man muss sie erst I6schen und neu einfligen. Missionsausfiihrung: Da der Roboter
rickwarts die Stufen hinauf fahrt muss man sich erst einmal mit der Kamerasetzung (hinter, vor, links,
rechts, Uber) auseinandersetzen, um zu wissen welche Position die ist, die man haben mdchte. Hat man
die Kamera an einen Punkt fixiert (z.B. hinter den Roboter) folgt diese ihm nicht. Das manuelle Editieren
funktioniert nur mit dem Klicken auf das - bzw. das + Symbol. Vielleicht ware die Eingabe in einem Feld
mittels Zifferntasten eine Option?

Beschriftung der Checkpoints in der 3D-Szene; Farbige Hervorhebung der Checkpoints in der 3D-Szene
nachdem einer in dem Auswahlmeni ausgewahlt wurde; Direktes Auswahlen der Checkpoints durch
Auswahl durch das Auswahlment (statt nur Sprung zu dem Checkpoint in der 3D-Szene); 3D-Modelle in
der 3D-Szene, die das Blickfeld des Users storen (z.B. die Stangen) entweder entfernen oder eine
Maéglichkeit erganzen, diese fir den Nutzer unsichtbar zu machen

- Missionsplanung/ -umplanung Uber drag and drop - Sichtbarkeit der Instrumente nicht immer gegeben -
Kennzeichnung der Instrumente - Bedienfelder sollten immer komplett sichtbar sein - Roboter sollte
immer im Bild bleiben, oder in Draufsicht springen

Roboter sollte immer mit der Kamera verbunden sein Farbgestaltung kénnte verbessert werden

Maybe a possibility to iterate over the waypoints using e.g alt + mouse wheel.

51

	Introduction
	Motivation
	ARGOS Challenge
	Robot Operating System
	RViz
	Ogre
	Qt

	State of Research
	Concepts
	Visual Representation of the Mission
	Internal Representation of the Mission
	User Interface
	Design

	Software
	Implementation
	General Displays, Tools and View Controllers
	Mouse View Controller
	Tool Selection Display
	UMAD Floor Control
	Robot Navigation Tool
	Place Obstacle Tool

	Overlay
	Rendering the Overlay
	Structure
	OverlayElement
	OverlayUiElement
	OverlayStateManager
	Panels
	Popups
	OverlayWrapperControl

	Internal Representation of the Mission
	ROS Nodes
	Floor Publisher Node
	Argo Interactive World Model Visualization Node
	Back-end Planning Node

	Visual Representation of the Mission

	Evaluation
	Conduction
	Results

	Conclusion and Outlook
	Bibliography
	Appendix
	List of Figures
	List of Tables
	Survey
	Survey Results

