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Abstract

Safe physical human-robot interaction gains importance since bringing humans and robots spa-
tially working together provides a high benefit for industry. Here robots can aid humans e.g. as
"third hand" or by performing monotonous tasks. To realize this, a certain level of safety has to
be ensured. A lightweight design and inherent passive compliance, as present at the BioRob-
Arm, helps to reduce the injury risk, which is caused by a robot. Beside this, various performed
collision tests from present research showed that a reliable collision detection can reduce the
collision force in many cases, or at least dissipate dangerous situations for an involved human.
This work implements a model-based disturbance observer for collision detection. Since an ac-
curate model had to be available to ensure a reliable collision detection, a general approach
to produce the dynamics model for robots with elastic joints is introduced. To use the model
as observer, its parameters have to be identified. For this purpose a method is proposed, that
combines two approaches, which separately treat the actuator and load side model to create a
linear equation system. These equation systems are then solved using excitation trajectories,
which are optimized according to an appropriate observability measure. The model identifica-
tion process is verified by simulations and experiments. Finally the implemented model-based
collision detection is successfully tested during a collision test with an appropriate reaction. The
tests have shown that the proposed methods can be used for model identification and collision
detection, but the produced model has to be refined to better represent the real behavior. Also
the benefit of the collision detection has to be evaluated in further tests with the real robot.



Kurzzusammenfassung

Die sichere Mensch-Roboter-Interaktion gewinnt immer mehr an Bedeutung, denn das gemein-
same Arbeiten von Mensch und Maschine innerhalb eines Arbeitsraumes stellt einen großen
Nutzen für die Industrie dar. Hierbei kann ein Roboter zum Beispiel als "dritte Hand" di-
enen, oder monotonen Aufgaben für den Menschen übernehmen. Um dies zu realisieren, muss
ein gewisses Maß an Sicherheit gewährleistet werden. Leichtgewichtige Roboter mit passiver
Nachgiebigkeit, wie es der BioRob-Arm darstellt, sind eine Möglichkeit das Verletzungsrisiko
zu reduzieren. Zusätzlich durchgeführte Kollisionstests aus bisherigen Arbeiten zeigen, dass
eine verlässliche Kollisionserkennung die Kollisionskraft in vielen Fällen reduzieren oder zu-
mindest für den Menschen gefährliche Situationen auflösen kann. Diese Arbeit setzt einen
modellbasierten Beobachter für die Kollisionserkennung um. Zur zuverlässigen Kollisionserken-
nung muss ein akkurates Model zur Verfügung stehen. Zur Ermittlung des Dynamikmodells
von Robotern mit elastischen Gelenkten wird ein allgemeiner Ansatz vorgestellt. Bevor das
Modell dann im Beobachter heran gezogen werden kann, müssen seine Parameter identifiziert
werden. Für diesen Zweck wird eine Methode vorgeschlagen, welche zwei Ansätze miteinan-
der kombiniert, die das antriebs- und abtriebsseitige Modell getrennt betrachten, um für diese
jeweils ein lineares Gleichungssystem zur Parameterabschätzung zu erstellen. Um möglichst
gute Ergebnisse mit Hilfe der Gleichungssysteme zu produzieren, werden spezielle hierfür opti-
mierte Trajektorien genutzt. Die Ergebnisse der Parameteridentifikation werden sowohl durch
Simulationen als auch über Experimente überprüft. Abschließend gilt es die implementierte
modellbasierte Kollisionserkennung erfolgreich durch einen Kollisionstest und passende Reak-
tionsstrategie zu beurteilen. Diese Tests haben gezeigt, dass die vorgestellten Methoden für die
Parameteridentifikation und Kollisionserkennung geeignet sind, jedoch das vorliegende Modell
weiterentwickelt werden muss, um das reale Verhalten noch besser wiederzugeben. Welchen
genauen Nutzen die Kollisionserkennung zur Steigerung der Sicherheit hat, sollte jedoch noch
in weiteren Tests mit dem realen Roboter untersucht werden.
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1 Introduction

Nowadays, a machine that autonomously fulfills a task is called robot. But this understanding
evolved over time. The term robot was introduced first in 1920 by the Czech writer Karel Capek
in his play "Rossum’s Universal Robots (R.U.R.)". The word robot emanates from the Slavic word
"robota", which means subordinate labour or forced work. In R.U.R. the robots were human like
machines (today we would say "androids"). This imagination of the concept robot was refined
by Isaac Asimov in the 1940s. This Russian science-fiction writer introduced the well known
three laws for the human-robot interaction. Here the human safety is the center of attention.
So in the middle 20th century robots were a beautiful conception but unrealizable since the
technical requirements were not fulfilled.

The following historical overview summarizes the key statements of [1]. In the following
decades the first robotic systems were build. First they only duplicated one-to-one the movement
of a human master. With development of integrated circuits computer-controlled robots were
designed. These robot arms replaced step-by-step humans in factories and finally in general
industry. But the robot found its way out of the industrial environment with new applications
like e.g. cleaning, space 1 or search and rescue. After research in the intelligent connection
between robot perception (e.g. computer vision) and action, robots are now expected to safely
work and life with humans (providing support, service, entertainment, education, etc.).

A reason for the rapid ascent of the robots in the fabrication and other industries is their not
diminishing accuracy and the employment in environments dangerous for humans. Humans
were replaced at the assembly-line by cheaper robots. Does that mean, robots are "better" than
humans? It is true that robots can better handle monotonous and unambitious tasks, because
they basically do not fatigue. But in contrast, they are clumsy and dangerous for humans. To
cope with these disadvantages one research topic is to design biologically inspired robots. With
such inspired bodies the robots should be easily and safely integrated into human environments.

Human-Centered and Life-Like robotics is the research field that covers the vision to leap from
personal computers to personal robots. This includes designing biologically inspired robots and
safe human-robot interaction. Humanoid robots for instance are capable of bipedal locomotion.
They interact with humans via perception systems. These systems should recognize the environ-
ment, understand orders by interpreting human language or react on the humans mood2 (and
respond to it appropriately). Humanoids are an example of bio-inspired robots. These robots
are reproductions of some natural results, but not necessarily of the underlying means. They
tend to adapt traditional engineering approaches to observations of living creatures. On the
other side biomimetic robotics tend to replace classical engineering solutions to reproduce the
observation of a creature 3. So biomimetic robots are bio-inspired, but not vice versa.

1 One example is the mars exploration with "Opportunity" (http://marsrovers.jpl.nasa.gov/home/index.html)
2 Kismet is a humanoid robot than interacts with humans by simulating emotions:

http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html.
3 Some examples for such biomimetic robots are the "RunBot"from McGill Univerity

(http://www.manoonpong.com/Runbot.html), the "Stickybot" from Stanford University Center for Design
Research (http://bdml.stanford.edu/twiki/bin/view/Rise/StickyBot) or the "RoboTuna" from Massachusetts
Institute of Technology (http://www.manoonpong.com/Runbot.html)
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The aim of Human-Centered and Life-Like robots is not possible, if the human-robot interac-
tion is not safe. The following robot safety issues are taken from [2]. Actually industrial robots
are far too dangerous to share space with humans. But physical human-robot interaction (pHRI)
can be very useful. There are two kinds of pHRI: "hands-off" and "hands-on". "Hands-off" in-
teraction includes tasks where a worker has to enter the robots workspace (e.g. maintenance,
repair or test tasks). "Hands-on" interaction is necessary e.g. to work with Intelligent Assist
Devices, where humans comanipulate payloads with the device as partner. Robots that are de-
signed to coexist and cooperate with humans can work on applications like assisted industrial
manipulation, collaborative assembly or medical applications. Within these applications the im-
portance of safety and dependability increases when human lives are involved. The segregation
of humans and robots fails, if they have to share the physical environment to successfully com-
plete their task that requires collaboration. The Holy Grail of pHRI design is intrinsic safety.
A robotic device is intrinsically safe if no matter what failure, malfunctioning, or even misuse
happen, humans are always safe.

There are various ways to improve the design of intrinsically safe robots. One way is to design
an active force control that requires force/torque sensors where ever impacts can occur. This
compliance, introduced after sensing an impact, is limited by how the controller can alter the
robots behavior. Letting a heavy robot behave gentle and safe is a hopeless task. Another way
to achieve safer robots is to construct arms with low inertia of their parts and back-drivability.
The psychological acceptability of such arms can be further increased by introducing mechanical
compliance. Such compliance realized e.g. by cable transmissions with springs decouples the
actuators reflected rotor/gearbox inertia from the links whenever an impact occurs. But this
naturally compliant transmissions can diminish performance (decreasing positioning accuracy,
velocity of task execution, slow response, increased oscillation, etc.). Since these performance
criteria are crucial for most applications, the main research topic is the fast and accurate control
of such soft manipulators.

But how do we know when a robot is safe? To design a safe robot one has to know a metric
to assess the risk of injuries in accidents. Some severity indices of an impact which can be
mapped to the probability of causing a certain level of injury are the Gadd’s severity index
(GSI), the viscous injury response (VC), or the head injury criterion (HIC, most widely used
in the automotive industry). Most of them are related to the tolerance curve developed at
Wayne State University (WSTC). This curve (based on experimentally acquired from animal
and cadaver head collisions) plots the head acceleration against impact duration. It indicates
that very intense head acceleration is tolerable if it is very brief, but that much less is tolerable
if the pulse duration exceeds 10 - 15 ms.

In this thesis the biomimetic, partially intrinsically safe robot called BioRob-Arm is subject of
research. It consists of links with low inertia and a compliant cable/spring transmission from
the motor to the joints. This construction is inspired by the human arm and the corresponding
force transmission between muscle and joint. As already mentioned this design decouples the
motor/gearbox inertia from the links, and tries to be intrinsically safe. In any case, a collision
can occur and harm humans near the robot arm. Even if there are no persons nearby the robot
it can collide with obstacles in its workspace. To increase both safety of humans and the robot
itself, a collision detection (and appropriate reaction) is needed. One way to realize a collision
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detection is to use a model to compute a residual between calculated and real arm position [3].
But this detection is just as good as the underlying model.

An accurate robot model is not only necessary for such a collision detection. It is also used
to realize model-based robot control schemes as computed-torque or resolved-acceleration. A
model is also important to enable off-line programming supported by simulation with accurate
motion, which reduces the costs and time of developing a high quality robotic system. To
determine a model with highest possible accuracy the model parameters have to be detected.
One way to realize this is to disassemble the robot followed by weighing and balancing the
components. This is in most cases too complex or not even possible. Alternatively a CAD model
can compute the required parameters. This computation also requires an accurate CAD model
and material informations that perhaps are not available. This is why an experimental approach
is chosen in this thesis to receive the model parameters.

One example of use for physical human-robot interaction is mentioned in [4]. Many small and
medium enterprises (SMEs) need robotic automation solutions to increase their cost efficiency.
These enterprises have to cope with frequently changing conditions of the production process.
In this area service robots are required that fulfill the following key requirements, especially for
applications with an unstructured and shared environment for humans and robots:

• Safety: Inherent safety at high speeds and human friendly design boost efficiency and
acceptance.

• Flexibility: Mobility, short installation and deployment times allow to quickly change the
robot’s location and to flexibly react on changing production conditions and current needs.

• Usability: Simple and intuitive programming that can be performed by untrained person-
nel.

• Performance: Task execution with speed and accuracy comparable to a human arm.

Common industrial robots typically do not meet this criteria or are too expensive for these
applications.

Chapter 2
Chapter 2 gives an overview of how human safety can be increased, considering tasks that

require cooperation between humans and robots. To know when a robot is safe it has to be
investigated what kind of injury it can produce. This chapter shortly presents some safety re-
quirements, which forces are acting during a collision between humans and robots, and which
design decision lead to a save robot. Since a reliable collision detection can provide some kind
of safety, possible detection schemes are introduced including a model-based one. To realize a
model-based collision detection, the model parameters have to be identified first. Approaches
which are concerned with this issue are shortly summarized.

Chapter 3
Chapter 3 presents a description how to model a series elastic actuator including the dynam-

ics model and the inverse dynamics. For illustration the BioRob-Arm is modeled. After the
kinematic model, the dynamic model configuration is presented containing the elastic transmis-
sion, the motor dynamics and the whole equations of motion. How the series elastic actuator

1 Introduction 3



influences the inverse dynamics and its usage in the control scheme is shown, as well as how
Matlab/Simulink is used to model the robot. Since the Newton-Euler recursion is part of the
model parameter identification, it is introduced as procedure to calculate the dynamic equations.
Additionally one possibility how to extract the dynamic matrices from the dynamic equations is
explained.

Chapter 4
Chapter 4 describes a general possibility to identify the model parameters of a robot with

elastic joints. The methodology of the identification process for the actuator and load side are
theoretically introduced, before the modified Newton-Euler recursion with only linear model
parameters is shown. An identification method containing excitation trajectories and how these
are produced is presented, followed by the BioRob-Arm parameter identification on simulation
and by experiment.

Chapter 5
In chapter 5 different collision scenarios and a collision detection scheme are introduced. The

observer-based detection method and its properties are presented, as well as an appropriate
reaction strategy on collisions. Since the joint velocity calculation produces very noisy results,
a method using linear regression of the joint positions is presented for this purpose. Finally a
collision test is carried out in simulation and which contact model is advisable to use is investi-
gated.

Chapter 6
Chapter 6 summarizes the results of all treated issues and what can be done to further improve

the parameter identification and evaluate the collision detection.

4



2 State of Research

This chapter gives an overview of what can be done to increase human safety in tasks that
require cooperation between humans and robots. Further it describes what limitations exist in
case of the BioRob-Arm.

As already described in chapter 1, reasons for physical human-robot interaction are to aid
humans with routine work, realize human guided teaching, or collaborate assembly. Especially
small and medium enterprises need robotic automation solutions to increase their cost efficiency.
As shown on [5], examples for service applications are to grip and place chaotically stored work
peaces into a machine tool, or the robot forms a worker’s third hand. But for all possible
applications in which a robot assists a human (also in domestic environments) they must never
harm people in their environment.

2.1 Safety Requirements for Physical Human-Robot Interaction

One approach to define safety requirements for industry robots is the ISO 10218 of the European
Committee for Standardization [6]. In addition to inherent security requirements for robot
parts it restricts the execution to increase safety in collaborative operation with humans. Here
the maximum tool center point is restricted to 250 mm/s. Further more, either the maximum
dynamic power of 80 W or the maximum static force of 150 N has to be guaranteed. These are
very strong restrictions and result in high performance limitations of the robot. Despite such
massive constraints it is not assured that nobody is injured during a malfunction either from
hardware or from software.

After investigation of the effect of robot speed, robot mass, and constraints in the general
environment on safety in human-robot interaction during impacts tests [7] conclude, that the
requirements introduced by ISO 10218 tend to be unnecessarily restrictive. Crash-Tests of the
"DLR-III Lightweight Manipulator" with a dummy at various speed [8] produced the impact
characteristics shown in figure 2.1. The black line shows the externally measured force. The
red line represents the acting joint torque (where the sensor manifests saturation). The collision
decelerates the link and causes a peak (over ≈ 4 - 10 ms) in the measured force (black line).
The joint torque, effected by the collision, is detected ≈ 6 ms delayed after the impact. This
shows, that the impact force is transmitted in a very short period. Even if the collision detection
would be able to detect the impact faster, the motors could not revert their motion sufficiently
fast enough to reduce the transmitted force.

To evaluate the severity of the suffered injuries [8] uses the "Head Injury Criterion", which is
common in the automobile industry. This severity criterion indicates the probability of getting
injured. A collision experiment was carried out at 2 m/s with the following industrial robot
arms: DLR Lightweight Manipuator, KUKA KR3-SI (54kg), KUKA KR6 (235 kg) and the KUKA
KR500 (2350kg). The surprising result of this collision tests was that the injury probability of
all robot arms was below one percent. Since this result seamed not to be very meaningful for
human-robot interaction, [9] and [10] focused on the force that is needed to cause fractures in
the facial and cranial bones. The results showed that even moderate velocities of 0.5− 1.0m/s
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Figure 2.1: Collision characteristics at 2 m/s (from [8])

suffice to cause fractures in all bones accept for the frontal bone. The frontal bone resists impacts
up to 2 m/s.

Up to now only safety of the head was investigated. In [11] further experiments took the
neck, the chest and the arm into consideration. It was shown that for these body parts the
collision detection is able to reduce the collision force. The main reason for this observation is
stated in the natural compliance of this body parts, which stretch the force transmission over a
longer period (in comparison with the head). Besides the force reduction the collision strategies
removed the end-effector from the collision, which resulted in an increased sense of security.
Another subject was the force that arrived at the Motor during a collision. It was observed that
even with slow velocities the maximum motor torques of rigid robots were exceeded for mil-
liseconds. To reduce this torque peaks the joint stiffness can be reduced or a collision detection
can be used.

Besides blunt collisions with humans it is important to consider that the robot arm is act-
ing with sharp tools. [12] tried experiments with various tools from screwdriver to a scalpel
and showed that a collision detection and reaction provide a huge benefit. Without collision
detection the sharp tool can easily penetrate humans and damage organs resulting in serious
injuries.

As mentioned above, no collision detection is fast enough to reduce the transferred force
peak. This force is caused by the link and joint (motor, gear) inertia. To have a detailed insight
to the involved torques during a collision the explanation of [3] is outlined. Figure 2.2 shows
the model of a motor with gear, followed by a link. τm describes the motor torque, θ , θ̇ , θ̈ the
motor position, velocity and acceleration, ng the gearbox ratio, q, q̇, q̈ the joint position, velocity
and acceleration, Ir the rotor inertia, Ig the gearbox inertia an I the link inertia. All inertias are
expressed with respect to the same rotation axis.

6 2.1 Safety Requirements for Physical Human-Robot Interaction
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The connection between motor and joint velocity and its derivative is given by the gearbox
ratio (see equation 2.1).

q̇ = ng · θ̇ q̈ = ng · θ̈ (2.1)

For the next consideration no load is assumed (I = 0) and the gearbox inertia is negligible
(Ig = 0). If the gearbox is considered idealized with an efficiency of 100 percent1, the per-
formance has to be maintained over the gearbox. The actuator and output performances are
described by θ̇ ·τm and q̇ ·τ [13], and have to be equal in case of an idealized gearbox:

q̇ ·τ= θ̇ ·τm. (2.2)

After inserting equation 2.1 in equation 2.2, the dependency between motor torque and out-
put torque is received (see equation 2.3).

q̇ ·τ=
q̇

ng
·τm ⇒ τm = τ · ng (2.3)

To identify the acting motor inertia in the torque of the output side, one has to insert equation
2.1 and 2.3 into the motor’s equation of motion Ir θ̈ = τm [13] (see equation 2.4).

Ir θ̈ = τm ⇔ Ir

q̈

ng
= ngτ ⇔ Ir q̈ = n2

gτ ⇔ τ=
Ir

n2
g

q̈ (2.4)

Equation 2.4 shows that the motor torque is modified by the gearbox and results in the real
on output side acting motor torque Ir/n

2
g . This torque is denoted as "reflected inertia". This

inequality between acting motor torque on actuator and output side is not negligible. Consider-
ing a lightweight robot with low link inertia and a high gear reduction, the link inertia I can be
smaller than the reflected motor inertia Ir/n

2
g , even if Ir is very small.

1 The error introduced by the idealization is taken into account in the gearbox friction
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Now the acting torques on output side are determined and the remaining inertias (Ir 6= 0, I 6=
0) can be considered. Since all inertias are expressed with respect to the same rotation axis
they simply can be added up. To illustrate why, consider the volume integral for calculating the
separate moments of inertia. Since these volume integrals are build along the same axis, they
can be composed to one integral by adding them up. So the resulting torque on output can be
expressed as:

τ= (
Ir

n2
g

+ Ig + I)q̈. (2.5)

All torques involved in a collision are known and we can revisit the collision characteristic.
For rigid robot arms, the whole force (caused by all present moments of inertia Ir/n

2
g + Ig + I)

is transmitted at once. But if the joint is even little compliant, the rotor continues to turn. How
long it continues is determined by the elastic transmission between motor and link. The more
compliant the transmission is the more the rotor can continue to rotate, before the arrested joint
has effect on the motor. This behavior results in a delayed transmission of the motor and gear
inertias into the collision. Such delay achieves more time for both, the collision detection and
for reverting the motors, to avoid that the force caused by the motor and gearbox inertia are
transmitted into the collision.

[14] researched several joint actuation examples and investigated the limits of performance
under safety-enforcing constraints. One of the actuation examples introduced series elastic actu-
ators (SEA) [15]. The result with various transmission stiffnesses showed that the interposition
of an elastic transmission between the actuator and the link increased safety with low stiffness
but decreased performance at the same time. Hence using the SEA design to decouple the rotor
inertia from the link inertia seems to reduce injury risk. Another benefit of the SEA design is the
intrinsic low pass filtering of shock loads, which reduce the peak gear forces and low pass filters
the shock impulse back driving the actuator [15].

Besides the SEA design two other somewhat more complicated actuation mechanisms were
examined in [14]. The distributed macro-mini (DM2) actuation approach [16] and the variable
stiffness transmission (VST) approach. The DM2 actuation contains two actuators in paral-
lel connection to the same joint, one is devoted to low-frequency components of the required
torque, while the other is designed for high-frequency parts. The slow one provides high torques
with high rotor inertia and is coupled through a passive elastic transmission (SEA design). The
other motor for high frequencies is limited in torque with a very low rotor inertia and rigidly
connected to the joint. The VST actuation is an SEA actuation that further allows to vary the
transmission stiffness during actuation. The evaluation of both actuation mechanisms resulted
in a performance recovering compared to the SEA performance. The DM2 scheme outperforms
SEA in case of large transmission compliance, while there is almost no difference for stiff cou-
pling. The VST with high stiffness at low velocities (harmless) and low stiffness at high velocities
(to reduce the transmitted reflected inertia in case of collision), further outperformed the DM2

actuation, when the stiffness variation range was at certain size. Another advantage of VST
is that it allows to put the link in motion swiftly at early acceleration phase, and to minimize
oscillations in the final deceleration phase.
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Whatever actuation mechanism is chosen for a robot, a collision detection is necessary for
further improving safety. It enables to reduce the acting collision forces (in non-rigid case), it
increases the sense of security by resolving a dangerous situation and it enables that humans
can cooperate with robots equipped with sharp tools.

2.2 Collision Detection and Reaction

There are several approaches to detect collisions by additionally mounting sensors on the robot
arm. For example [17] invented a flexible skin. This skin targeted to realize an inexpensive
skin to provide the capability of sensing multiple contact locations to increase the level of phys-
ical human-robot interaction. As explained in [2] active force control schemes can be used to
introduce compliance with respect to the sensed interactions. This approach requires all parts
of the arm to be equipped with force/torque sensors. Further there are intrinsic limitations to
what the controller can do to alter the behavior of the arm. Another possibility for increasing
security and to avoid collisions is to localize obstacle positions in the collaborative workspace
[18]. One example of a somewhat appropriate reaction to collisions is proposed by [19]. Here
a control scheme for the whole robot surface is proposed that restricts the torque commands
to values that comply to preset safety restrictions. So the potential impact force in case of a
collision is limited. Another possibility to increase safety during a collision is realized with the
KUKA KR 3 SI. This robot arm is equipped with a soft protection cover, capacitive sensors and
an autonomous releasing tool fixture. The capacitive sensors enable the robot to detect people
in its workspace, and decelerate motion before a collision occurs. The soft cover additionally
reduces the collision force.

The simplest way for robots with high path precision, where the joint position, velocity and
acceleration can be measured, is described in the following approach. The acting joint torques
can be compared with simulated torques from the robot’s dynamic equations [20]:

τ = M
�

q
�

q̈ +C
�

q , q̇
�

q̇ + g
�

q
�

+ F
�

q , q̇
�

q̇ (2.6)

τ̂ = M
�

qd
�

q̈d +C
�

qd , q̇d
�

q̇d + g
�

qd
�

+ F
�

qd , q̇d
�

q̇d (2.7)

Here, τ is the joint torque vector corresponding to the measured joint positions, velocities
and accelerations, and τ̂ the currently expected joint torque vector. Subtracting one of the other
results in the external effected torque

τex t = τ− τ̂. (2.8)

But this assumption is only for high path precision true, since then the control error is minimized
and the estimation of τex t as precise as possible. All fast transitions can be indications for
a collision. To increase robustness in case of sensor noise, τex t can be filtered. This basic
approach of comparing modeled with measured behavior is not suitable for the BioRob-Arm,
since it is only equipped with position sensors. To estimate the missing values one can use
numeric differentiation of the joint position. But such joint velocity and acceleration estimation
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can massively increase the senor noise. To decide whether a collision is occurred or not with
such noisy signals is not reliably feasible (see [3] for an example).

All above mentioned collision detection strategies need to assemble additional sensors and
thus suitable cables. This is design related impossible for the BioRob arm. To minimize the
amount of cables a bus can be used instead. But this requires electronic control systems at the
sensors which increases the robot mass. Further, common sensors for torque, velocity and ac-
celeration measurement are not designed for temperatures like in cryogenic applications. Thus
a procedure is needed, that gets along with only position sensors.

The actually implemented collision detection also compares a desired with the actual value.
Here the joint torque variations are not analyzed, but the expected and actual motor behavior
is evaluated. Since the motor velocity is proportional to the applied motor voltage, the current
motor velocity can be estimated from a particular applied voltage. Velocity changes at constant
voltage, can thus indicate that a collision is occurred. The difficulty is, that not all unexpected
variations of the velocity are caused by collisions. Also dynamic effects as gravitation or Coriolis
forces can be reasons for such behavior. This results in the task to find an appropriate threshold,
that allows variations caused by dynamic effects but further reliable react on collisions. Up
to now this task cannot be reliably solved. Such a collision detection principle has been also
proposed and implemented by [21]. Another problem with this approach is, that even with
exact error detection, the acting joint torques cannot be determined from the estimated motor
velocity, thus which joint is involved. So, an collision detection strategy has to be found, that
enables reliable collision detection only with motor and joint position sensors.

System

Modell

Residuum
Calculation

Residuum
Evaluation

Diagnosis Algorithm

r

f

u y

f

Figure 2.3: Structure for residuum calculation/evaluation from [22] (control variable u, measured
system output y, residuum r, error f)

All proposed approaches need either more sensors or cannot reliably determine the error be-
tween desired and actual joint torques. For complex dynamic systems, as robots are, this task
is called "Fault detection and isolation" (FDI). The error estimation tries to generate a diagnose
signal, which expresses the error. This signal is called residuum. While execution the residuum
is calculated from input and output. The structure of such a FDI-method is shown in figure 2.3.
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As residuum one understands a quantity that shows the variations between the measured
process behavior and a model. A residuum hast to be significantly different from zero if an error
occurs. If a certain threshold is exceeded one can assume that an error is existent.

One FDI-method which refers to joint torques of robot arms was proposed from [23]. This
method, based on the generalized momentum, does not need a joint acceleration estimate.
Further it filters the measured values to reduce the influence of sensor noise and increase the
robustness. Such created residuum should enable to reliably isolate errors, so that an adequate
reaction strategy (like proposed in [24]) can be applied. This approach especially fits to the
BioRob-Arm, because high joint elasticities can be simply added in the model. This is why this
methodology is used for collision detection. To realize a reliable detection, the model has to be
estimated as precise as possible. In the following section procedures for parameter estimation
are presented.

2.3 Parameter Identification

As described in the previous section, a reliable observer-based collision detection requires a
precise robot model. But also for other applications like model-based control schemes such
a model is necessary. The accuracy of the application and hence its robustness or performance
depends on the accuracy of the model parameters. Creating a model for a robot arm is a research
topic since the mid-eighties. There are two types of model parameters, geometrical and inertial.
Geometrical parameters can in most cases simply be measured, e.g. the length of the links.
As presented by [25] there are three typical ways to determine the dynamic parameters. The
first possibility is to use a CAD model of the manipulator links, but this method relies on model
accuracy thus to model small parts as bearings, bolts, etc. The second opportunity consists of
physical measuring all parts. [26] disassembled for this purpose the links of a PUMA 560 arm.
With this method it is not possible to determine the cross-coupling inertia values of the links.
The third and most preferred method contains planed motion of the manipulator and using
the dynamic model to calculate the parameters using the executed motion and a least squares
approach.

An overview of existing algorithms for parameter estimation is given by [25]. [27] presented
an algorithm that use a 6-by-1 one vector of sensed force and torque values to determine the
inertial parameters, based on dynamics received by Newton-Euler recursion. [28] proposed an
two-step algorithm that first identifies center of mass and Coulomb friction and in a second step
the load dynamics and viscous friction parameters. To overcome the non-linearity of the center
of mass position in the Newton-Euler recursion, they assume that the manipulator motions are
slow and the rotary accelerations are insignificant.

A lot of effort to identify the model parameters is done by Gautier et al. based on the robot
energy and the Lagrange-Euler algorithm. The research done consists of identifying the inertial
parameters [29], and calculation of the minimum inertial parameter set, that can be identified
[30]. Further in [31] the direct and inverse dynamic model were combined for identification
in an optimization loop that only required torque data. To improve the estimations of the
classical least squares approach [32] addresses to the problem of a noisy regression matrix and
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the resulting biased least squares estimation by building an instrument matrix that removes
this bias. Besides the Lagrange-Euler approach the Newton-Euler recursion can be used to
calculate the robot dynamics. [33] and [34] developed an efficient estimation method based on
a modified Newton-Euler recursion to overcome the non-linearity of the center of mass position.

Based on the parameter categorization [35] into identifiable, identifiable in linear combina-
tions and unidentifiable parameters [36] used a maximum likelihood estimation ([37]) of the
inertial parameters for a 6-DoF rigid robot arm. All described methods only deal with rigid
robot arms. In context with humanoid robots, [38] proposed a two-step algorithm founded in
the serial elastic actuation design. First the approach identifies the actuator parameters includ-
ing stiffness of the elastic transmission, and then considers the load side. In contrast to [36],
here the minimal parameter set is not calculated numerically, but symbolically and hence is not
build for a particular trajectory.

The approach used in this master thesis tries to combine the latter two mentioned procedures.
It is based on the modified Newton-Euler approach used in [36] to get the rigid dynamic model
of the load side and reduce this model with the symbolic approach used by [38]. This symbolic
post-processing and its results rely on the quality of symbolic simplification.
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3 Modeling of Series Elastic Actuators

3.1 Introduction

The involved forces during a collision are determined by the load and motor inertia, further
no collision strategy is fast enough to reduce the transmitted collision force caused by the link
(see chapter 2). One way to reduce the links inertia is to move the actuators from the joints
to the basis, and e.g. transmit the actuation torques via cables. Further, the safety for physical
human-robot interaction can be increased by including passive elasticity in the robots design
[2]. One way to realize such elasticity is the series elastic actuator (SEA) mechanism [15].
SEAs introduce a elastic element (e.g. springs) between the output side of the gearbox and the
link (as shown in figure 3.1)

Motor
Gear

Train
Link

Series

Elasticity

Figure 3.1: Block diagramm of searies elastic actuator (from [15])

As already described, one result of [14] is that an elastic transmission increased safety with
low stiffness but decreased performance at the same time. This decoupling of rotor and link
inertia seems to reduce injury risk. [15] additionally stated that another benefit of SEA is that
it low pass filters the shock loads in both directions, to the load side and back to the actuator
side. [39] highlighted that to describe the motion of an elastic robot arm, one has to introduce
additional coordinates. Such coordinates do not need a high elasticity to be justified, even
small elasticities e.g. from harmonic drives need a special control action to avoid oscillations or
instabilities.

To facilitate modeling of a series elastic actuated joint with compliant cables, [40] relocated
the motor position for modeling in the joint (see figure 3.2). The precondition for this simplifi-
cation is that the kinetic energy of the elastic transmission can be neglected in comparison with
the kinetic energy of the other mechanical parts. To consider this change in the model e.g. the
motor mass can be added to the link and the transmission ratio of the pulley to the gearbox ra-
tio. In the following two paragraphs the dynamic modeling of elastic systems will be described,
following the descriptions of [39] and [41].

Dynamic modeling
Here, a robot with flexible joints will be considered as an open kinematic chain with N+1 rigid

bodies interconnected by N revolute joints. Accordingly to a rigid model, N frames are attached
to the N joints, hence the standard Denavit-Hartenberg convention can be used. All joints are
actuated by electrical drives. As mentioned above additional coordinates are needed to describe
an elastic robot system. One realization are two N-by-1 vectors, q for the link positions and θ
for the motor positions. θ is reflected through the transmission gears. Reasons for this choice
of variables are given by [39]:
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(a) Construction of one BioRob-
Arm joint
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(b) BioRob-Arm joint actuated by a se-
ries elastic actuator

Figure 3.2: Relocation of the motor into the joint to facilitate modeling adapted from [40]

1. after reflection, the model will be formally independent of the transmission ratios;
2. the chosen position variables will have a similar dynamic range;
3. the kinematics of the robot will be a function of the link variables q

only so that all issues related to direct/inverse kinematics will be identical
to the case of fully rigid robots.

To model an elastic system [39] proposed some assumptions that can be made.

(A1) The actuators’ masses are rotationally symmetric and their center
of masses are located on the rotation axes.

This first assumption implies the independence of the inertia matrix and the gravity term from
the motors position. Further the rotor inertia matrix is diagonal (consist only of principal mo-
ments of inertia)

To neglect the dynamic coupling of the inertial components (links and rotors) a second as-
sumption can be made.

(A2) The angular velocity of the rotors is due only to their own
spinning instead of their own together with the link velocity.

Since usually motors with a high gearbox ratio are used to transform a fast rotation with low
torque into a slow rotation with higher torque (ratio of 1:50 to 1:200), this assumption is often
correct. So the influence of the robot motion on the rotors can be neglected.
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Taking these assumptions into account and considering the robots energy [39] received the
dynamic model of a elastic robot, coupled by a compliant transmission (idealized without fric-
tion):

Imθ̈ +τel = τm (3.1)

M
�

q
�

q̈ +C
�

q , q̇
�

q̇ + g
�

q
�

= τel (3.2)

Equation 3.1 describes the motor dynamics with the diagonal rotor inertia matrix Im, the torque
caused by the elastic transmission τel and the motor torque τm. Equation 3.2 describes the rigid
robot dynamics with the mass matrix M

�

q
�

, the matrix C
�

q , q̇
�

of the centrifugal and Coriolis
terms and the gravity torque vector g

�

q
�

coupled with the elastic transmission τel .

Inverse dynamics
The inverse dynamics problem computes the nominal torque needed to reproduce a desired

motion (given by q , q̇ , q̈). In contrast to rigid robots, the inverse dynamics for elastic robots
is not straight forward. Since the motor trajectory is not known, this has to be computed in an
additional step with the torques produced by the elastic transmission. The elastic transmission
with springs can simply be formulated as:

τel = K ·
�

θ − q
�

⇒ θ = K−1 ·τel + q (3.3)

Now the motor position can be determined only from the joint position and the elastic torque
transmission. K is the diagonal spring stiffness matrix. After differentiating equation 3.3 two
times and insertion into the motor dynamics (equation 3.1), the motor torque τm can be esti-
mated from:

τm = Imθ̈ +τel

= Im ·
�

K−1 · τ̈el + q̈
�

+τel (3.4)

As can be seen the elastic transmission force can be computed from the rigid dynamic model
(equation 3.2) and its second derivative (y [i] = di y/dt i denotes the i-th derivative, set N
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for compactness, cf. [39]):
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�

q , q̇
�

(3.6)

τ̈el = M
�

q
�

q [4]+ 2Ṁ
�

q
�

q [3]+ M̈
�

q
�

q̈ + N̈
�

q , q̇
�

(3.7)

After insertion of equation 3.5 and 3.7 in equation 3.4 the final equation to compute the
necessary motor torque to reproduce a desired motion is achieved:
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(3.8)
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Since equation 3.8 contains the computation of q [4] = d4q/dt4 it requires a higher degree of
smoothness of the desired trajectory.

The next sections show how a robot with elastic joints can be modeled and how the dynamic
matrices are created. Further the needed control law is briefly introduced. As example the
BioRob-Arm is described.

3.2 Modeling the BioRob-Arm

The BioRob-Arm [42] is an 4 DoF series elastic actuator (SEA) arm, which is inspired by the
human arm in sense of construction and field of application. Its lightweight design allows to
manipulate objects up to a mass of 1 kg without difficulty with a dead weight of only 4 kg. This
performance also describes the field of application for this arm. Analog to the human arm it
has to perform "Pick-and-Place" tasks, e.g. at an assembly line. Since the robot is lightweight
and portable it can be deployed at different locations. New tasks can simply be created by
walk-through teaching, so that the facility time remains as small as possible.

To reduce the links inertia, the robot is constructed very lightweight with rigid links and all
motors are placed as close as possible at the robots base. The actuators torques are transmitted
to the links by pulleys and cables. To realize the passive compliance between the actuators
and links, according to the SEA design, springs are built-in the cables. As summarized in [40],
actuation via electrical motors is robust, allows high speeds, exhibits excellent controllability
and is well suited for highly mobile applications. In contrast the SEA design with very low
stiffness needs special efforts regarding oscillation damping. Further the actuation via cables
and pulleys increases friction.

Figure 3.3 shows the mechanical structure of the BioRob-Arm including the fist and second
link. The motors for the first and second joint are mounted on the first link, the motors to
actuate the third and fourth joint are mounted right behind the rotation axis of the second joint,
on the third link. This motor placement enables a very low link inertia. One can see, that the
actuation cables of the fourth joint are wrapped around a deflection pulley on joint three. The
drive train of the third joint with all its components is separately depicted in figure 3.3.

3.2.1 Kinematic Model

As already proposed in chapter 3.1, the kinematic behavior can be described by the standard
Denavit-Hartenberg (DH) convention, which only depends on the joint position q as for rigid
manipulators. The kinematic structure according to the DH-parameters is shown in figure 3.4.

The actuation of joint four needs an additional guiding pulley, since the actuator is places on
link 2 (see figure 3.3). This deflection pulley (with radius rd3

) couples joint three with joint
four and influences the equilibrium position of motor four, as introduced in [40]. The equilib-
rium positions are the joint and motor positions where the elastic coupling produces no torque.
Without an additional deflection pulley the equilibrium position of the joints corresponds to the
actual motor position, as it is the case for joint one till three. But for joint four it has to be con-

16 3.2 Modeling the BioRob-Arm



Series eslastic drive train

DC motor

gearbox

motor
encoder

bevel gear

pulley

joint
pulley

synthetic cable with 
passive compliance

Figure 3.3: Mechanical design with actuation principle of BioRob-Arm

sidered how the guiding pulley in joint three influences the cable wrapped around. The cable
length around the guiding pulley is equal to the amount of cable that unwinds from the pulley
at joint four, resulting in the following equation:

rd3
q3 =−r4 ∆q4 ⇒ ∆q4 =−

rd3

r4
q3. (3.9)

This deflection has to be regarded at equilibrium calculation, that is used for control. As vector,
the correction term of the motor position to receive the equilibrium position can be written
down as:

αc(q) =
�

0,0, 0,−
rd3

r4
q3

�t

(3.10)

Now the geometrical structure is modeled. To describe the dynamic model, the motor posi-
tions, cables and pulleys have to be abstracted as depicted in figure 3.2. As already described
this simplification is only justified, if the kinetic energy of the elastic transmission can be ne-
glected in comparison with those of other mechanical parts, the motor masses are added to the
link and the transmission ratio to the gearbox ratio. The resulting schematic model is shown in
figure 3.5. As one can see, the links consists of thin bars with mass mi and inertia Ii around the
center of mass. The center of mass position is determined by the vector rci

relative to the joint
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Figure 3.4: Kinematic chain structure of BioRob 4 DOF robot arm with joint frames according to
listed DH parameters.

Frame Si located at joint i + 1. The compliance of the elastic transmission can simply be mod-
eled as a mass-spring-damper system with spring constant kei

and damping coefficient dei
. Not

shown in figure 3.5 is the joint friction, which is defined as a viscous damping with coefficient
di. Further the rotor and gearbox have the inertia Iri

and Igi
respectively.

3.2.2 Dynamic Model

For the sake of simplicity the dynamic model is developed for one joint and then transferred into
matrix form for n joints. The next paragraphs explain the components of the dynamic model
one by one and merge them together to create the dynamic equations.

Elastic transmission
As mentioned above the elastic transmission can be modeled as a mass-spring-damper system.

A model of such a system with all acting forces is displayed in figure 3.6. Here, the variable x
denotes the elongation taking affect on the spring and damper. Hooke’s law supplies the spring
equation τs = ke · x , further the viscose damping is described by τd = de · ẋ . These forces result
in τel = τs + τd = ke · x + de · ẋ , the force of the elastic transmission. Since the elongation is
determined by the motor and joint displacement, the final equation is:

τel = ke
�

θ − q
�

+ de

�

θ̇ − q̇
�

(3.11)

Motor dynamics
The motor positions θ were mentioned as reflected, so that all position variables have the

same range and are independent of the transmission ratio. For the same reasons the torques
generated by the motors and their friction are reflected through the elastic coupling. To facilitate
understanding, the reflection is explained with a model of the elastic drive train, shown in figure
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Figure 3.5: Series elastic 4 DoF robot arm

3.7. As explained in [3] the motor dynamics can be derived from the conservation of angular
momentum [13]. The time derivative of the angular momentum determines the torque: τr =

dL
dt

.
The angular momentum L of a rigid body (e.g. the rotor) is the product of its moment of inertia
and the angular velocity L = Ir θ̇r . After insertion, the rotor dynamic equation is derived as
τr = Ir θ̈r . After introducing a general motor friction term depending on the rotor velocity,
the mechanical motor equation becomes (the subscript r indicates that variable belongs to the
rotor):

τr = Ir θ̈r + fr(θ̇r) (3.12)

To achieve the required motor torque, the fast motor velocity has to be reduced via a gearbox.
Additionally the elastic transmission further reduces speed. The allover transmission ratio is
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Figure 3.7: Motor model and elastic drive train with all acting forces

called z, with z = ng · np > 1, ng the gearbox ratio, np the pulley ratio, and influences the rotor
speed as follows:

θ̇ =
1

z
· θ̇r ⇔ θ̇r = θ̇ · z (3.13)

θ̈ =
1

z
· θ̈r ⇔ θ̈r = θ̈ · z. (3.14)

Since the speed is reduced, the rotor torque is amplified according to the same transmission:

τm = z ·τr ⇔ τr =
1

z
·τm. (3.15)

Using a gearbox to reduce speed and amplify torque introduces two additional values, the gear-
box friction fg(θ̇r) and inertia Ig . Both values are expressed with respect to the rotor axis and
also have to be reflected to the load side. Since the inertia terms are expressed with respect to
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the same axis, they simply can be added up to Îr = Ir + Ig . One possibility to model friction is
to assume a viscous damping dv · θ̇r with coulomb friction dC · sign(θ̇r). Since both friction terms
act based on the same velocity θ̇r , the friction coefficients can also be added up, resulting in the
following friction model:

f̂r(θ̇r) = fr(θ̇r) + fg(θ̇r)

= dv,r · θ̇r + dC ,r · sign(θ̇r) + dv,g · θ̇r + dC ,g · sign(θ̇r)

=
�

dv,r + dv,g

�

· θ̇r +
�

dC ,r + dC ,g

�

· sign(θ̇r) (3.16)

Insertion of the combined friction and inertia equation for the rotor and gearbox into equation
3.12 leads to:

τr =
�

Ir + Ig

�

· θ̈r +
�

dv,r + dv,g

�

· θ̇r +
�

dC ,r + dC ,g

�

· sign(θ̇r) (3.17)

Reflecting the rotor torques, velocity and acceleration according to 3.13, 3.14 and 3.15 through
the elastic transmission leads to the final motor dynamics equation (subscript m) with reflected
variables marked with braces:

τm

z
=
�

Ir + Ig

�

· θ̈ · z+
�

dv,r + dv,g

�

· θ̇ · z+
�
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· sign(θ̇ · z)

τm = z2 ·
�

Ir + Ig

�

︸ ︷︷ ︸

Im

·θ̈ + z2 ·
�

dv,r + dv,g

�
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dv,m

·θ̇ + z ·
�

dC ,r + dC ,g

�

︸ ︷︷ ︸

dC ,m

·sign(θ̇)

τm = Im · θ̈ + dv,m · θ̇ + dC ,m · sign(θ̇) (3.18)

Rigid joint dynamics
The last part to complete the whole one joint elastic dynamics model is the link dynamics

equation. This is taken from [20]:

τ= I q̈+ dq̇+mgl cos(q). (3.19)

Resulting dynamics
Till now three systems and their dynamics equation have been derived. To achieve the whole

model of one elastic joint, this systems have to be coupled together. For this purpose, the
schematic representation of all systems and the acting torques are depicted in figure 3.8. The
sum of force/toques can only be built on one point or solid body. The motor torque trans-
mission to the link happens only through the elastic drive chain, because of the contact point
between motor↔ elastic coupling and elastic coupling↔ link. At these points the equilibrium
is required and leads to the following equations:

τ1 = τel and τ2 = τel (3.20)

As shown in figure 3.8 the first equation acts at the contact point of the motor and the second
equation at the contact point of the link. Inserting both equations into the motor and link
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Figure 3.8: Free body diagram of an elastic joint with acting torques

equations, as illustrated in figure 3.8, results in the whole dynamics equation of one elastic
joint, coupled via an elastic transmission:

Imθ̈ + dv,mθ̇ + dC ,msign(θ̇) + ke
�

θ − q
�

+ de

�

θ̇ − q̇
�

= τm (3.21)

I q̈+ dq̇+mgl cos(q) = ke
�

θ − q
�

+ de

�

θ̇ − q̇
�

(3.22)

Now this joint model has to be extended for n joints. First it hast to be ensured, that all
derived equations also hold for higher degrees of freedom. Since assumption (A2) from chapter
3.1 holds, the motor model can also be used for motors moving in space. The transmission
ratios of the BioRob-Arm (about i = 100 : 1) causes the motors to rotate very fast in comparison
to the joints, further the inertial coupling of motors and joints can be neglected. The elastic
transmission is only assumed, but does not exist in the real joints and thus has no mass. With
this absence of mass, motions of the elastic coupling cannot influence the motion of joints in
space. So the elastic coupling in all joints can be modeled by a mass-spring-damper model. The
robot dynamics equation for an n-DoF robot arm can be formulated as matrix equation [20].
Altogether this leads to the used dynamics model in this work:

Imθ̈ + Dv,mθ̇ + DC ,msign
�

θ̇
�

+ K
�

θ − q
�

+ D
�

θ̇ − q̇
�

= τm (3.23)
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q , q̇
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q̇ + F
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q , q̇
�

q̇ + g
�

q
�

= K
�

θ − q
�

+ D
�

θ̇ − q̇
�

(3.24)

where M
�

q
�

is the mass matrix, C
�

q , q̇
�

q̇ the Coriolis matrix, F
�

q , q̇
�

q̇ the friction and damp-
ing of the joints and g

�

q
�

the gravity torque vector. The mass-spring-damper model of the
elastic transmission is represented by

τel = K
�

θ − q
�

+ D
�

θ̇ − q̇
�

, (3.25)

with K the positive definite diagonal matrix of the spring stiffness and D ≥ 0 the diagonal matrix
of viscous friction coefficients. The motor dynamics are described by the diagonal motor inertia
matrix Im, the diagonal viscous damping coefficient matrix Dv,m, the diagonal coulomb friction
coefficient matrix DC ,m and the motor torque vector τm.
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3.2.3 Inverse Dynamics

As described in chapter 3.1 the inverse dynamics problem is calculated using the elastic trans-
mission model. Equation 3.3 provides the motor position as a function of the joint position.
This can be insert into the motor dynamics equation 3.1. The remaining unknown variable to
calculate the motor torque is the torque applied by the elastic transmission. To calculate this
torque the rigid body dynamics of equation 3.5 can be used.

Since the model created for the BioRob-Arm additionally contains damping in the elastic
transmission, obtaining the motor position as a function of the joint position from equation 3.25
is not readily possible. Solving equation 3.25 results in θ = K−1 · τel + q − D

�

θ̇ − q̇
�

, with the
motor position as a function of the joint position and velocity, as well as of the motor velocity.
As described in [39] for a given θ̇ (0), its solution θ̇ (t) is needed to evaluate the nominal torque.
In the context of control, this labor can be saved. The spring damping in equation 3.23 and 3.24
is considered as external force resulting in control errors.

So for control purpose the described procedure in chapter 3.1 can be used to obtain the
nominal motor torque corresponding to a given trajectory. As final refinement the correction
term to receive the equilibrium position has to be considered in torque calculation (as explained
in [40]). This results in the following equation, determining the motor position as a function of
only the joint position:

θ = K−1 �M
�

q
�

q̈ +C
�

q , q̇
�

q̇ + F
�

q , q̇
�

q̇ + g
�

q
��

+ q +αc(q) (3.26)

To receive the desired motor torques for the given trajectory equation 3.23 is used, by inser-
tion of the motor velocity and acceleration (achieved from equation 3.26) and elastic torque
(achieved from equation 3.25):

Imθ̈ + Dv,mθ̇ + DC ,msign
�

θ̇
�

+τel = τm. (3.27)

How this inverse dynamics computation is used in the control scheme will be shortly explained
in the next section.

3.2.4 Position Control

The actual used control scheme is a state space controller. As described in [40] each elastic joint
can be described by a system of four first order ordinary differential equations. This determines
the length of the state vector. Since the motor and joint positions are provided, these and their
derivatives (qq̇θ θ̇ ) are used to describe the complete state space.

The trajectory planner only creates the joint position and velocity. As consequence the motor
position and velocity have to be calculated. Here the inverse dynamics presented above is used
and further simplified. As described in the previous section the damping term, in motor position
calculation, is neglected and treated as a control error. Besides the damping term, also the
dynamic terms can be ignored, when only using the steady state torque (q̇ = q̈ = 0). Only the

3 Modeling of Series Elastic Actuators 23



force, caused by gravitational acceleration, influences the steady state torque. This leads to the
following simplification of the desired motor position calculation 3.26:

θd = K−1 �g
�

qd
��

+ qd +αc(qd) (3.28)

The control loop is split into two parts. The part already described, builds the steady state
controller. The second part is an approximative gravitational compensation. With this compen-
sation the gravitational force in the actual position is calculated separately and then added to
the controlled force, to receive the whole acting forces in the joint (static and gravitational).
This is done to facilitate the controller parameter adjustment independently from the actual
gravitational force. Considering the gravitational forces within the control loop can result in
inaccurate controlling for arm configurations with low gravitational forces (needs low control
parameters) or high gravitational forces (need high control parameters).

All control system parts and how they interact is shown in figure 3.9. The whole state vector
is led back and controlled using a P-controller except for the joint positions, these are controlled
with a PI-controller. Since the inverse dynamics calculation only provides the desired value of
the motor positions, these have to be differentiated to get the motor velocities.
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State Space Controller Gravity Compensation

Figure 3.9: Multivariable control structure on joint level (adapted from [40])

3.2.5 Modeling with Matlab/Simulink

To test the parameter estimation and collision detection on the real robot arm, it is useful
to create a model for simulation. On this model unpredictable behavior during an execution
does not effect the hardware or harm people near the robot arm. Another benefit is that all
changes can directly be implemented and their effects simply be observed or analyzed. To
realize this kind of model, one can use the Matlab/Simulink application. It allows to build
the physical structure using the SimMechanics Toolbox. This physical construction delivers the
usually provided sensor data similar to a real system.
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To facilitate testing, the Simulink model is build out of blocks, that represent the single parts
of the physical structure. On actuator side first, a actuator model is encapsulated in a block (an
electric or mechanic model is available). This actuator is further encapsulated within the elastic
coupling, to build a whole series elastic actuator model. Another block is build to represent the
physical structure of a rigid joint including the succeeding link. As the real prototype evolved,
this block also evolved. The modular model design enables one to build an series elastic actuator
with an arbitrary number ob joints just by couple one after another. If an algorithm or a specific
behavior has to be tested, one can first consider only one or two joints to reduce complexity,
before inspecting the complete robot. Apart from the physical structure other blocks have been
created, e.g. a controller, a collision detection block and some reaction strategies.

Before using the created model, one has to be sure, that this model represents the realistic
behavior of the robot. To do so, the analytical robot dynamics equations can be consulted. These
equations can be solved to get the joint acceleration q̈ , which can be numerically integrated
two times to receive the joint velocity q̇ and position q . After receiving the joint position and
derivatives, these can be compared with the produced corresponding values of the Simulink
model. The inverse robot dynamics is also modeled as a block, which requires mass and Coriolis
matrix, as well as friction and gravitation vector. These are build automatically from a Newton-
Euler recursion for the robot arm with given DH parameter. How these matrices can be extracted
from the dynamics equations is described in the next section.

The constructed model is the basis for the investigated algorithms and procedures in this work.
How the model is used for the specific task will be considered in the corresponding chapter.

3.3 Calculating Dynamics Equations

There are two fundamental approaches to derive the robots dynamic equations. As described
in [43] the Lagrange formulation starts from the total Lagrangian of the system and is energy
based. The Newton-Euler in contrast is based on a balance of all the forces acting on the
manipulator links. This "force-balance" approach uses elementary dynamics formulas: Newton’s
second law and Euler’s equation. The energy based Lagrange method will not be described
here (see [44] or [43]). The Newton-Euler recursion is introduced, because a modification of
this method is used for the parameter estimation. An equivalent formulation of this modified
method also exists for the Euler-Lagrange approach [43], but will not be discussed here.

Since a force balance is used to derive the equations of motion, the Newton-Euler approach is
recursively structured. During the forward recursion the link velocities and accelerations were
propagated from the base to the end-effector. This information is used to perform a backward
recursion to calculate all acting forces and torques. Figure 3.10 gives an overview of all pa-
rameters that are used to analyze each joint during the recursion. All kinematic and dynamic
parameters used for the recursion are shown in image 3.10, and listed in the table 3.1 below:

The inverse dynamics computation tries to find the joint moments/forces according to a given
trajectory. To calculate these forces first the links linear and angular velocities/accelerations
are calculated along the kinematic chain from the base to the end-effector, called "forward
recursion". During this recursion, both Newton’s second law and Euler’s equation are used
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Figure 3.10: Separated link with linear and angular velocities/accelerations, joint torques, center
of mass, forces and torques

mi Total mass of link i.
τi Joint torque/force at joint i.
ωi, ω̇i Angular velocity and acceleration of the i-th coordinate frame Si.
vi, v̇i Linear velocity and acceleration of the i-th coordinate frame Si.
vci, v̇ci Linear velocity and acceleration of the center of mass of link i.
Fi, Ni Net force and torque exerted on link i.
fi, ni Force and torque exerted on link i by link i− 1.
r i

ci Position of the center of mass of link i.
z0 z vector of 3-by-3 identity matrix, z0 = (0, 0,1)T .
Ri−1

i Orthogonal rotation matrix, which transforms a vector in the i-th coor-
dinate frame to a coordinate frame, which is parallel to the (i − 1)-th
coordinate frame, for i = 1,2, . . . , n, where Rn

n+1 = I .
I ci
i Inertia tensor of link i expressed about the center of mass of link i.

Table 3.1: Kineamtic and dynamic parameters for Newton-Euler recursion

to calculate the forces and torques at the links’ center of masses. The following well known
equations are used to determine the needed values:

ωi = Ri
i−1

�

ωi−1+σiz0q̇i
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(3.29)

ω̇i = Ri
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ω̇i−1+σi
�

z0q̈i +ωi−1×
�

z0q̇i
���
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1ωi × z0q̇i + z0q̈i
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(3.31)

v̇ci = v̇i + ω̇i × r i
ci +ωi ×

�

ωi × r i
ci

�

(3.32)

Fi = mi v̇ci (3.33)

Ni = I ci
i ω̇i +ω×

�

I ci
i ωi

�

(3.34)

The calculated forces and torques acting at the center of mass are now used to determine the
forces and torques at the joints. This is done in opposite direction from the end-effector to the
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base ("backward recursion"), where external forces can be considered. To calculate the joint
torques the following equations are used:

fi = Ri
i+1 fi+1+ Fi (3.35)

ni = Ri
i+1ni+1+

�
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i + r i
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�t
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(3.37)

where the external force and torque at the end-effector are expressed with fn+1 and nn+1 respec-
tively. The parameter σi represents the joint type: σi = 0 for translational and σi = 1 for a
revolute joint. Further the angular velocity and acceleration of the robot’s base can be assumed
asω0 = 0 and ω̇0 = 0 if the robot arm is fixed. In contrast to these values, the linear acceleration
of the robot’s base is not set to zero, but equals the gravitational acceleration v̇0 = (gx , g y , gz)t .

To carry out the Newton-Euler recursion the following parameters are required: inertia tensor
I ci
i , mass mi, center of mass position r i

ci, as well as the local rotation matrix Ri−1
i and translation

vector r i−1
i , which describes the frame transformation from Si to Si−1. Additional information

and the derivation of the listed equations, as well as examples are described e.g. in [44] or [43].

Extracting dynamic matrices from dynamic equations
The resulting equations from the Newton-Euler recursion are not in closed form (grouped

corresponding to the dynamic matrices). The simplest way to receive the dynamic matrices is to
eliminate all expressions that are not contained in a matrix. This approach holds for the mass
matrix, Coriolis and gravitation vector. But if the Coriolis matrix is needed, one has to use the
mass matrix and the Christoffel symbols.

The general matrix form of the dynamic equation is:

τ = M
�

q
�

q̈ +C
�

q , q̇
�

q̇ + g
�

q
�

. (3.38)

One simply sees, that only the mass matrix is multiplied by the joint acceleration. If the joint
velocity and the gravitation vector are set to zero q̇ = g = 0 in each dynamics equation the
reminder left hand side only contains this multiplication. For joint i this can be written as
follows:

n
∑

j=1

di j(q)q̈ j. (3.39)

To get the matrix entry in row i and column j, the joint acceleration q̈ j with i = j has to be set
to one and those for i 6= j to zero. If this is done for each joint i, one receives the mass matrix
with all entries i, j.

The next matrix considered is the Coriolis matrix. Using the Christoffel symbols, as defined in
[43] the terms of the dynamics equation each joint i, corresponding to the Coriolis matrix, can
be written as:

n
∑

j=1

n
∑

k=1

ci jk(q)q̇kq̇ j, where ci jk =
1

2

�

∂mi j

∂ qk
+
∂mik

∂ q j
−
∂m jk

∂ qi

�

, (3.40)
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with ci jk known as Christoffel symbols. The term ci j j(q)q̇2
j represents the centrifugal effect in-

duced on joint i by velocity of joint j. Further the term ci jk(q)q̇kq̇ j represents the Coriolis effect
induced on joint i by velocities of joint j and k. As in the common matrix-vector form the
Coriolis term is written as C(q , q̇)q̇ , the elements of matrix C satisfy the equation

n
∑

j=1

ci jq̇ j =
n
∑

j=1

n
∑

k=1

ci jk(q)q̇kq̇ j. (3.41)

As consequence the (i, j)-th element of the matrix C(q , q̇) is defined as
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∂ qi

�

q̇k (3.42)

In contrast of using the Christoffel symbols to create the Coriolis matrix the Coriolis vector
c(q , q̇), where the joint velocities are already multiplied with the Coriolis matrix, can be ex-
tracted directly from the dynamic equations. The terms that belong to the mass matrix or the
gravitation vector can be deleted by setting q̈ = g = 0. The remaining terms directly form the
Coriolis vector entries. Since the combination of how the joint velocities are multiplied within
the Coriolis vector is not unique, it is not possible to reconstruct the Coriolis matrix out of this
vector. That is the reason why the Christoffel symbols are used.

Analog to the Coriolis vector, the gravitational vector can be achieved. The gravitational parts
of the dynamic equations are independent on joint velocity and acceleration. Setting these to
zero q̈ = q̇ = 0 yields to the gravitational vector entries.

After these steps, the mass and Coriolis matrix, as well as the Coriolis and gravitational vector
are received and can be used e.g. in the inverse dynamics model.

3.4 Conclusion

This chapter introduced a compact description of how to model a series elastic actuator. The
introduction first gave an overview what a SEA consists of and what assumptions can be made to
facilitate modeling. After a general explanation how to model the dynamics and how to receive
the inverse dynamics, the BioRob-Arm was introduced as example for a SEA.

Besides the mechanical design of the drive train and other design choices made for the BioRob-
Arm, all general modeling steps mentioned in the introduction were explained in detail for the
BioRob-Arm. First the kinematic model was derived using the standard Denavit-Hartenberg
notation. To calculate the equilibrium positions the coupling of the fourth and third joint has to
be considered.

To receive the dynamics model, all parts were investigated separately and then combined. This
step included to design the elastic transmission and how to reflect all motor parameters through
this transmission. The reflected values were derived step by step by considering the whole
elastic drive train and the inherent transmission ratio. To couple the actuator and load side
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dynamics into one equation system the force/torque transmission has been observed, resulting
in the complete dynamics model

Imθ̈ + Dv,mθ̇ + DC ,msign
�
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�
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�
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containing the elastic transmission

τel = K
�

θ − q
�

+ D
�

θ̇ − q̇
�

.

After deriving the dynamics equations, the inverse dynamics has been focused. The motor
position estimation is a nontrivial task, if damping is included in the elastic transmission. Since
the inverse dynamics is used in case of the control system, damping can be neglected and
assumed as control error. With this assumption, the motor position has been formulated as a
function of only joint variables and their derivatives:

θ = K−1 �M
�

q
�

q̈ +C
�

q , q̇
�

q̇ + F
�

q , q̇
�

q̇ + g
�

q
��

+ q +αc(q)

Subsequent to the inverse dynamics of the elastic system, the controller was introduced. The
control system is a state space controller that consists of two parts. The first part linearizes the
dynamic system so that it can be described by q , q̇ ,θ and θ̇ in state space. Each joint can then
be controlled by a linear controller for all states. Besides this part, additionally a gravitation
compensation is build into the control loop.

After all dynamic parts have been created, a short overview of the built Matlab model for
simulation has been given. Finally, the Newton-Euler recursion has been introduced to create
a rigid dynamics model. Since the produced dynamics equation is not in matrix vector form,
a simple procedure is shown to receive the dynamic matrices and vectors, as post-processing
of the recursion. The next chapter deals with the parameter identification of a series elastic
actuator.
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4 Parameter Identification

4.1 Introduction

Parameter identification of a robot model can be done in various ways. As already described
in chapter 2.3 the geometrical or inertial parameters can be extracted from a CAD model. But
the accuracy of the extracted parameter depend on the information available to build a CAD
model. Perhaps material informations are not known or the modeling of all parts are not pos-
sible. Also disassembling is not an alternative of choice because it is time consuming and the
interdependent parameters (inertia values) can not be determined. Swevers ([37]) claimed that
an accurate dynamic robot model is required to increase quality, reduce costs and time of man-
ufacturing, since such model enables the support of off-line programming by simulation and
accurate motion control. Further he argued that experimental identification is the only efficient
way to obtain an accurate model.

There are two ways in identifying model parameters. Static methods estimate parameters
when the robot is not moving. For example the spring stiffness can be determined, by fixing the
robot motor positions in a particular configuration and weight a link down with a certain load.
This moves the link and elongates the spring between link and motor. As the elongation can be
measured with the motor and joint position sensors and the weight and lever arm is known, the
resulting torque can be computed. If this is done for various loads, the spring characteristics
is detected. This procedure is simple but time consuming. Such experiments further allows to
identify the geometrical parameters. For example the length and weight of links can simply be
measured before assembling. This approach is not applicable to determine dynamic parameters
e.g. the spring damping or inertial parameters.

In contrast to static experiments, parameters can be identified with the robot in motion. This
motion is created with a trajectory, so that the dynamic parameters are estimated as accurate
as possible. Aim of the parameter identification introduced in this work is to estimate the rigid
body inertias, as well as the motor frictions and elastic transmission parameters. The basis for
this estimation is a linear dynamics model. As described in [45] all parameters can be combined

in a Npar × 1 parameter vector ϑ =
�

ϑ1, . . . ,ϑNpar

�T
. The output of the system is represented by

the n× 1 vector τ and the coefficients of the linear dynamic model by an n× Npar matrix φ:

τ = φ(q , q̇ , q̈)ϑ. (4.1)

One possibility to determine the parameters is to take P measurements during the motion of
the system (e.g. the torques, joint position, velocity and acceleration) and stack the resulting
equation 4.1 for each measurement to a new linear equation system:

τt ot = φt ot (q , q̇ , q̈)ϑ, (4.2)

with τt ot is an n · P × 1 vector of all output measurements and φt ot a n · P × Npar matrix. One
solution for the parameter estimation is to use ordinary least squares:

ϑ = (φt ot
Tφt ot )−1φt ot

Tτt ot . (4.3)
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Since the dynamics equation is rewritten as linear equation system 4.1 that is used to perform
a linear regression (solving 4.1 with least squares), 4.1 is called regressor form of the dynamics
equation and the matrix φ is called regressor. Rank deficiencies can cause problems in inverting
φt ot

Tφt ot . Reasons for such rank deficiencies (extracted from [45]) can be inadequate data
or unidentifiable parameters. To evaluate the data quality an observability index, such as the
condition number of the regressor matrix can be used. Because of the robot’s structure some
parameters could not be identifiable. These parameters have to be detected and eliminated from
estimation procedure.

The identification procedure presented in this work tries to combine the two approaches pre-
sented in [38] and [36]. As discussed in [38] the parameter estimation for series elastic actu-
ators can be divided in two parts. First, the parameters (including motor friction and elastic
transmission stiffness/damping) on actuator side are identified after creation of the regressor
form for the actuator side dynamics. This regressor form is build with the symbolic algorithm
proposed in [38]. After this identification, the load side parameters can be examined. Here,
[38] received the symbolic load dynamic equations from a Lagrange-Euler algorithm. Using
these created equations does not take into account, that the center of mass position vector is
nonlinear. To get all load side parameters linear in the estimation process, the proposed pro-
cedure of [36] is used. Here the link inertia tensors are expressed about the link coordinate
frames instead of the center of mass frames. To reduce the created regressor model [36] cat-
egorizes the parameter in identifiable, identifiable in linear combinations and unidentifiable
considering a random trajectory. This trajectory is sampled and the measured values stacked
as described above. On base of the regressors rank, the parameters are categorized. Since this
approach is based on a particular trajectory, the categorization can be different for different tra-
jectories. This work used the proposed procedure to get a regressor form with linear parameters
but categorized the parameters inspired from the algorithm in [38]. This combination of both
approaches led to an identification framework, that identifies the parameters with a general
symbolic regressor form where all parameters appear linear.

4.2 Methodology of Parameter Identification

Actuator side Load side
Create dynamic equation Build regressor form of dynamic equation

with modified Newton-Euler recursion.
Build regressor form Reduce model to the minimal set of

dynamic parameters (base parameter set)
Determine the optimal excitation trajectory for parameter estimation

Estimation of model parameters

Table 4.1: Identification steps on actuator and load side

As outlined in chapter 4.1, this work tries to combine two parameter estimation approaches,
to build a general framework for creation of a robot dynamics model with the highest possi-
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ble accuracy. In the following section, the theoretical background of the combined parts are
explained step by step, building the whole framework. Since the parameter estimation on actu-
ator and load side are treated differently, they will be explained separately, starting on actuator
side. If all parameters on actuator side are estimated, they are used to identify the parameters
of the rigid load side structure. The identification process contains the steps described in table
4.1.

4.2.1 Build Regressor Form of Actuator Dynamics

The actuator dynamics for one joint (see equation 3.21) consists of three parts on the right hand
side:

the motor dynamics Imθ̈ ,

the friction model dv,mθ̇ + dC ,msign(θ̇),

the elastic transmission model ke
�

θ − q
�

+ de

�

θ̇ − q̇
�

,

and the resulting motor torque τm on the left hand side. Besides the motor dynamics, the
friction and elastic transmission model can be freely formulated or replaced by other models
(that depend linear on the model parameters). For that reason these parts have to be provided
by the user. Out of these terms the framework then automatically builds the whole actuator
dynamic equation.

As described in [38], it is easy to find the regressor form by simply rearranging the terms that
consists of parameter independent expressions, unknown parameters or products with unknown
parameters. Using the algorithm proposed in [38] the dynamic equation is treated as a text
string and than analyzed as follows. First the string is divided in subexpressions separated by +
and− operators, followed by further dividing the subexpressions separated by ∗ and / operators.
Each expression is then put into one of the three groups (parameter independent expression,
unknown parameter or product with unknown parameter). These groups exactly correspond
to the different parts of the regressor form: Parameter independent expressions belong to the
torque vector τ of the regressor form, expressions that form products with unknown parameters
constitute the matrix φ, and unknown parameters produces the vector ϑ.

For the above one joint example this rearranging can simply be done and results in the fol-
lowing regressor form:

τm− Imθ̈ =
�

θ̇ − q̇, θ̇ ,θ − q, sign(θ̇)
�

·











de

dv,m

ke

dC ,m











. (4.4)

The regressor form of the actuator side (equation 4.4) directly represents the base regressor
form, because it consists of the minimal number of unknown parameters that describes the
dynamic equations. Since there are no mutual dependencies between the actuator parameters
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as well as no linear dependencies between the regressor rows (in the n-DoF case), the regressor
form (with the used friction and transmission models) cannot be further reduced. Nevertheless
the framework tries to find a base regressor model according to the algorithm of [38] because
this could be necessary for other actuator models. The reduction process will be discussed later
in detail in context of the load side dynamics.

4.2.2 Build Regressor Form of Load Dynamics

The actuator dynamic parameters all appear linearly in the dynamic equations. This is not the
case for the rigid load side dynamics. The produced equations of motion from Newton-Euler
recursion or Lagrange-Euler algorithm are nonlinear in the center-of-mass vectors. To overcome
with this [36] used a modified Newton-Euler recursion proposed by [34] to receive a model that
is linear in all dynamic parameters. This modified Newton-Euler recursion will be described in
the following paragraphs. Each link can be described by ten inertial parameters ([44],[36]):
the total mass, the three center-of-mass coordinates scaled by the link mass, and the six entries
of the inertia tensor (three inertia moments and three inertia products).

As shown in chapter 3.3 the joint forces and torques within the Newton-Euler recursion are
calculated as follows:

fi = Ri
i+1 fi+1+ Fi (4.5)

ni = Ri
i+1ni+1+

�

Ri
i−1r i−1

i + r i
ci

�

× Fi +
�

Ri
i−1r i−1

i

�

×
�

Ri
i+1 f i+1

�

+ Ni (4.6)

If the inertia tensor, as described in [34], is expressed about the link coordinate frame instead
of the center-of-mass frame, the resulting model is linear in all dynamic parameters. The inertia
tensor expressed in the link coordinate frame can be computed according to the parallel-axis
theorem (Steiner’s law) as:

I ′i = I ci
i +mi

�

(r i
ci)

T r i
ciE − r i

ci(r
i
ci)

T
�

, (4.7)

with the 3× 3 identity matrix E.
Since the joint force fi is not influenced by the inertia tensor, equation 4.5 has not to be

changed. Equation 4.6 is modified as follows.

ni = Ri
i+1ni+1+

�

Ri
i−1r i−1

i + r i
ci

�

× Fi +
�

Ri
i−1r i−1

i

�

×
�

Ri
i+1 f i+1

�

︸ ︷︷ ︸

= fi−Fi (4.5)

+Ni (4.8)

⇔ ni = Ri
i+1ni+1+

�

Ri
i−1r i−1

i + r i
ci

�

× Fi +
�

Ri
i−1r i−1

i

�

×
�

fi − Fi
�

+ Ni (4.9)

⇔ ni = Ri
i+1ni+1+

�

Ri
i−1r i−1

i

�

× Fi + r i
ci × Fi +

�

Ri
i−1r i−1

i

�

× fi −
�

Ri
i−1r i−1

i

�

× Fi + Ni (4.10)

⇔ ni = Ri
i+1ni+1+ r i

ci × Fi +
�

Ri
i−1r i−1

i

�

× fi + Ni (4.11)

After substitution of Ni and Fi from equation 3.34 and 3.33 in equation 4.11, one obtains:

34 4.2 Methodology of Parameter Identification



ni = Ri
i+1ni+1+ r i

ci ×mi v̇ci
︸ ︷︷ ︸

= mi r
i
ci×v̇ci

+
�

Ri
i−1r i−1
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�
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i ω̇i +ω×
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I ci
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�

. (4.12)

Further substitution of v̇ci from equation 3.32 leads to:

ni = Ri
i+1ni+1+mi · r i

ci ×
�

v̇i + ω̇i × r i
ci +ωi ×
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��
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(2)

. (4.13)

To facilitate the formulation, the following identities are introduced:

a× (b× (b× a)) = b×
�

aT aE − aaT
�

b

a× (b× a) =
�

aT aE − aaT
�

b

Substituting this identities in equation 4.13 sub term (1) and 4.7 into sub term (2) one gets:
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(4.14)

which is the final joint torque equation with the inertia tensor expressed about the link coordi-
nate frame. For the next formulation, one has to insert equation 4.5, 3.33 and 3.32 into 4.14.
This leads to:
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i+1ni+1+mi r
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. (4.15)

After this, one can define a six by one vector γi as

γi =
�

fi ni
�T , (4.16)
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and combine 4.5 and 4.15 into a single matrix-vector equation

γi = D i
i+1γi+1+Γi , (4.17)

where D i
i+1

is the six by six pseudo-rotation matrix

D i
i+1 =

�

Ri
i−1

0
��
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(4.18)

and γi is defined as

Γi =

�

Fi
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�

, (4.19)

with N ′
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being
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(4.20)

and Fi is given by 3.33. In this modified procedure, equation 4.17 represents the backward
recursion. In the next step the recursion is expanded to receive a explicit expression for vector
γi . Further the vector Γi is decomposed in a matrix-vector product, of matrix K i and the dynamic
parameters vector ϑi for joint i. With this matrix-vector product and no externally applied forces
and torques, the recursion e.g. for a 4-DoF manipulator is:

γ4 =D4
5γ5+Γ4 = K4ϑ4

γ3 =D3
4γ4+Γ3 = D3

4 K4ϑ4+ K3ϑ3

γ2 =D2
3γ3+Γ2 = D2

3D3
4 K4ϑ4+ D2

3 K3ϑ3+ K2ϑ2

γ1 =D1
2γ2+Γ1 = D1

2D2
3D3

4 K4ϑ4+ D1
2D2

3 K3ϑ3+ D1
2 K2ϑ2+ K1ϑ1

(4.21)

With D i
j
= D i
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D i+1

i+2
. . . D j−1

j
this can be written as:
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(4.22)

or generally

γi =
�

D i
1K1 D i

2K2 . . . D i
n Kn

�

·ϑi , (4.23)
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with D i
j
= 0 if j < i and D i

j
= E if j = i (E: 6× 6 identitiy matrix).

As mentioned above the vector Γi and thus
�

Fi N ′
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�T
can be decomposed as the product of

matrix K i and the parameter vector
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i
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i
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�T
.

Before introducing matrix K i of this decomposition, the following notation is used to denote the
cross product of two vectors and the multiplication of a vector by a matrix. If ωi and a are 3×1
vectors, then ωi × a =

�

ωi x
�

a and the multiplication of 3× 3 inertia matrix Ii with the vector
ωi is denoted as Iiωi =
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Ii , where
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and
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With this notation the vectors Fi and N ′
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and simply be decomposed into
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with pi = Ri
i−1r i−1

i . Matrix K i can be semantically divided into submatrices as follows:

K i =

�

K i,11 K i,12 K i,13

K i,21 K i,22 K i,23

�

(4.27)

where K i,11 and K i,21 are of dimension 3× 1 multiplied by mi, K i,21 and K i,22 are of dimension
3× 3 multiplied by mi r

i
ci and K i,13 and K i,23 are of dimension 3× 6 multiplied by I ′

i
.
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After calculation of the backward recursion 4.22, the acting torques for joint i are chosen from
the following matrix-vector equation:
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=φi

ϑi (4.28)

with φi represents the 1× 10n regressor row of joint i. The whole dynamic model 4.1 received
with this modified Newton-Euler recursion is now linear in all parameters and directly provides
the n× 10n regressor matrix.

In case of the BioRob-Arm additional joint friction parameters need to be estimated. For
example when a viscous friction model di · q̇i is assumed for each joint, one just has to append
the friction coefficient (e.g. q̇i) into the regressor row φi and the friction parameter di into the
parameter vector ϑ. This results in a rigid dynamic model with friction, where each regressor
row consists of 1 × 11n elements. Since perhaps not all parameters are identifiable for one
particular robot arm, the so received regressor matrix has to be reduced. How this is realized
will be described in the next paragraph.

Receiving the base regressor form
As mentioned in [36] the regressor matrix produced by the modified Newton-Euler recursion

is not invertible due to loss of rank from restricted degrees of freedom and linear dependencies
between the columns of φ. The model reduction to the minimal set of dynamic parameters
that describe the system used in [36] is based on the categorization method that investigates
the linear dependencies between the regressor columns numerically for a particular trajectory.
This method categorizes the parameters into unknown parameters, parameters that appear in
linear combination and parameter that are not identifiable. Since the results of analyzing the
linear dependencies depend on the used trajectory, the categorization can change for different
trajectories. That is the reason why this work uses a more general approach mentioned by [38]
that symbolically reduces the regressor form.

To find the base regressor form, all linear dependencies have to be found. To realize this [38]
used a reasoning approach proposed by [46]. In order that the following procedure successfully
finds all linear dependencies, all regressor entries have to be simplified regarding the trigono-
metric function. The reasoning approach is done in two steps, first all fundamental functions
included in φ are identified, then a new matrix is created which is transformed to the Echelon
form by a Gauss-Jordan elimination. The resulting upper triangular matrix contains the lin-
ear dependencies between all regressor columns. These dependencies are used to get the base
regressor form and the minimal set of unknown dynamic parameters. As defined by [46] fun-
damental function of the regressor are time-varying functions of joint variables and their time
derivatives, that satisfies the following two conditions:
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1. Any fundamental function can not be represented by a linear combination of the other
fundamental functions.

2. All elements of φ can be represented by a linear combination of the fundamental functions.

Since the regressor entries are analyzed symbolically (analogue to the algorithm described in
4.2.1) the possible base functions out of which the fundamental functions are build (e.g. sin,
cos or sign) have to be user provided, to identify the fundamental functions. In addition to the
fundamental function, regressor entries can consist of system parameters that are multiplied
by certain fundamental functions. After investigation of all entries in φ all found fundamental
functions are stored in the vector f ∈ ℜk, with k the number of fundamental functions in φ.
The corresponding known system parameters are stored in a vector bi j ∈ ℜk such that the
multiplication of both results in the original regressor entry:

φi j
�

q , q̇ , q̈
�

= f T �q , q̇ , q̈
�

bi j (4.29)

The found system parameter vectors bi j of the corresponding regressor entry φi j in row i and
column j are used to build a new matrix B ∈ ℜl×Npar , l = nk:

B =









b11 · · · b1Npar
... . . . ...

bn1 · · · bnNpar









(4.30)

In the next step this matrix is transformed into the Echelon form BE by performing a Gauss-
Jordan elimination. The resulting matrix

BE =

�

BEu

0

�

(4.31)

consists of three different types of columns, that describe the linear dependencies between the
columns of φ. If all elements equal zero, the corresponding regressor column is not needed an
can be removed. Thus the corresponding dynamic parameter is not identifiable. The second
type of columns consists of only zero elements except for one entry that is one. For this type the
corresponding regressor column is linear independent and necessary for identification. The last
column type contains zeros and known parameter elements. Here the corresponding regressor
column is linear dependent on other columns and can be removed. The columns on which it
is linear dependent is represented by the row index of the elements different from zero. These
elements themselves represent the coefficients of the linear combination. After removing all
regressor columns that are not necessary, resulting in the base regressor representation φ0, also
the unknown dynamic parameters have to be reduces to achieve the base regressor parameters
ϑ0. This is done by the following multiplication:

ϑ0 = BEuϑ. (4.32)
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This multiplication deletes all not identifiable dynamic parameters, and linearly combines them
according to the linear dependencies of the regressor columns. In contrast to the used actua-
tor model, where all unknown parameters can be identified separately, the unknown dynamic
parameters partially can only be identified in linear combination of other parameters.

In addition to this model reduction, the framework numerically checks for a random trajectory,
if the derived regressor has full rank. The model reduction on symbolical expressions requires a
certain simplification of the dynamic expressions in the regressor matrix to find all linear depen-
dencies. If this simplification is not effective, the resulting base regressor is not of full rank. In
this case the model can be numerically reduced analogue to the symbolical approach by creating
the stacked regressor matrix φt ot (see chapter 4.1). This matrix is then transformed using the
Gauss-Jordan elimination to get all linear dependencies. The resulting upper triangular matrix
again contains all information to reduce the symbolical regressor as well as to produce the base
parameter set. Since this reduction is done based on a particular trajectory the reduction can be
different for varying trajectories, as the case in [36].

The next section describes how to find a trajectory, that allows the best possible identification.
Such trajectory is called persistently exciting.

4.2.3 Persistently Excitation Trajectories

After creation of the actuator side and load side regressor form, the resulting linear equation
system has to be solved. Since this is only possible if the regressor matrix has full rank, the
base regressor and base parameter set will be denoted by φ and ϑ (instead of φ0 and ϑ0). As
described in chapter 4.1 the parameters can be determined by taking P measurements during
a system motion and stack the regressor form for each measurement. Since the estimation
quality varies for different trajectories, one have to find the best suitable one for estimation of
the particular robot arm. This is done by finding the trajectory parameters that optimize an
observability measure.

As exciting trajectory a parameterized function such as a polynomial [38] or finite Fourier
series [37],[36] can be used. The angular position qi, velocity q̇i and acceleration q̈i for joint i
at time t expressed as parameterized polynomial can be written as:

qi(t) =
n
∑

l=0

al t
l q̇i(t) =

n
∑

l=1

lal t
l−1 q̈i(t) =

n
∑

l=2

(l2− l)al t
l−2 (4.33)
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where n represents the polynomials order. Alternatively a finite sum of harmonic sine and cosine
functions like finite Fourier series can describe qi, q̇i and q̈i as:

qi(t) =
n
∑

l=1

�

ai,l

ω f l
sin(ω f l t)−

bi,l

ω f l
cos(ω f l t)

�

+ qi,0

q̇i(t) =
n
∑

l=1

�

ai,lcos(ω f l t) + bi,lsin(ω f l t)
�

q̈i(t) =
n
∑

l=1

�

−ai,lω f lsin(ω f l t) + bi,lω f lcos(ω f l t)
�

(4.34)

with ω f the fundamental pulsation of the Fourier series. The periodic functions specified by the
Fourier series have a time period Tf = 2π/ω f . Describing the joint motion with this function
results in 2n+1 parameters, ai,l and bi,l for l = 1, . . . , n, which are the amplitudes of the sine and
cosine functions, and qi,0 which is the offset on the position trajectory. The trajectory parameters
for joint i are represented by the parameter vector δi .

Compared with this functions, the optimization problem for polynomials contains n+1 degrees
of freedom, whereas for Fourier series 2n+1 and therefor is more complex. But on the opposite
[37] mentions that, Fourier series are periodic and thus simply allow to repeat a motion for
time-domain data averaging. This improves the signal-to-noise ratio of the experimental data.

The trajectory parameters have to be determined in a way, that the parameter estimation
results in exact values. To judge how suitable a trajectory is for estimation, there exist several
observability indices. To check this indices the actual trajectory is sampled P times and a stacked
regression matrix φt ot is produced. As listed in [45], optimal experimental design theory has
given rise to several data measures. The most significant alphabet-optimalities are:

• A-optimality: minimize the trace of (φTφ)−1

• D-optimality: maximize the determinant of φTφ
• E-optimality: maximize the minimum singular value of φTφ

For robot calibration observability indices were introduces by [47], and shortly described in the
next paragraphs. Some of these also have an alphabet-optimality counterpart. Observability
index O1 represents the root of the product of the singular values of φ:

O1 =
(σ1 σ1 · · ·σm)1/mp

m
(4.35)

and is similar to d-optimality. Both formulations, d-optimality and O1, represent the volume of
the confidence hyper ellipsoid in the measurements τ with axis lengths corresponding to the
singular values. Maximizing O1 gives the largest hyper ellipsoid volume similar to maximizing
the determinant of the information Matrix M = φTφ. Since maximizing the determinant of
the information matrix M is equivalent to minimizing the variance Var [ϑ] = σ

�

φTφ
�−1

of the
estimated parameters, it is claimed that this index is the best.
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Another way to measure the observability is to minimize the condition number of φ. This
measure does not have an counterpart in optimality alphabet.

O2 =
µ1

µr
(4.36)

which measures the eccentricity of the hyper ellipsoid rather that its size, where µ1 is the biggest
and µr the smallest singular values. Minimizing the condition number automatically makes
all singular values become close to each other and rather forms a hypersphere than a hyper
ellipsoid. One point of critique of O1 has been that it may result in favoring one direction over
another to maximize the volume, this is avoided by O2.

Similar to e-optimality, the minimum singular value µr can be maximized:

O3 = µr . (4.37)

Here, the aim is to make the shortest axis as long as possible, regardless of the other axis. This
tries to improve the worst case. The a-optimality does not have a counterpart in robot calibration
literature. Since d-optimality seems to be the best choice, as it maximizes the confidence for
all parameters and minimizes the estimation variance, it is used in this work but with a little
modification. As proposed in [37] the d-optimality criterion can be expressed by

O1 =−log det M . (4.38)

This measure keeps the above mentioned properties, especially it is independent of the scaling
of the parameters. Additionally the negative log term assists the optimization algorithm, since
little changes near the optimum (high determinant value) result in bigger variations of the
objective function.

The excitation trajectory should not violate the actuation constraints as maximum and min-
imum joint position, velocity and acceleration. In Addition the trajectory should not cause
collisions with the robot itself or it’s the environment. Taking this into account, the complete
optimization problem is formulated as:

min
q ,q̇ ,q̈
− log (det M) s.t.

qmin ≤ q ≤ qmax

q̇min ≤ q̇ ≤ q̇max

q̈min ≤ q̈ ≤ q̈max

(4.39)

where the joint position, velocity and acceleration trajectories are represented by q , q̇ and q̈
respectively, under lower joint, velocity and acceleration bounds qmin, q̇min and q̈min, as well as
upper joint, velocity and acceleration bounds qmax , q̇max and q̈max respectively.

As proposed in [36] a first initial guess for the trajectory should not violate the physical robot
limits. Analogue to [36] the initial trajecotry parameters were generated using a simple least-
squares method, in this work. Since the joint velocities tend to be the limiting constraints on the
allowed trajectories these are taken as basis for all joints. To create the least squares solution
the finite Fourier-series for the joint velocity is reformulated as a matrix-vector equation:

q̇i = Aδi (4.40)
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with
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(4.41)

For computation of the initial trajectory parameters a random set of P possible velocities (by
equidistant sample times) in between the velocity bounds are generated. The parameter vector
δi is then determined with the standard least-squares approach:

δi =
�

AT A
�−1

AT q̇i . (4.42)

The trajectory parameters for each joint are combined into one column vector and passed to
the optimization algorithm. This tries to vary the trajectory parameters of all joints to minimize
the objective function by taking the joint, velocity, acceleration and Cartesian constraints into
account. The resulting excitation trajectories are then used to estimate the parameters, which
is described in the next section.

4.2.4 Parameter Estimation

After knowing the most suitable trajectory for parameter estimation, this trajectory is used to
move the robot arm and to measure the joint positions, velocities, accelerations and torques at
P time instants t1, . . . , tP . These measurements are used to build up the whole linear equation
system:

τt ot = φt otϑ,

with

τt ot =
�

τt1
· · ·τtP

�T

φt ot =









φ
�

qt1
, q̇t1

, q̈t1

�

. . .
φ
�

qtP
, q̇tP

, q̈tP

�









the stacked joint torque vector τt ot and regressor matrix φt ot . There are at least the number
of base parameters equations (and thus time instants) necessary to solve this equation system.
To increase the reliability of the results and decrease influence of noise it is useful to take more
measurements into account.
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After model reduction the regressor matrix is invertible and the equation system can be solved
by a standard linear least squares estimation:

ϑl s =
�

φt ot
Tφt ot

�−1
φt ot

Tτt ot . (4.43)

This least squares estimation is sensitive to noise in joint torque, position, velocity and accel-
eration measurement. To overcome this [37] proposed an iterative procedure that estimates
the Fourier series parameters and robot parameters simultaneously, by minimizing one global
maximum-likelihood criterion. If the measured joint angles are free of noise this maximum-
likelihood estimation simplifies significantly to a weighted least squares estimate:

ϑw ls =
�

φt ot
TΣ−1φt ot

�−1
φt ot

TΣ−1τt ot (4.44)

with the weighting function Σ−1 is the reciprocal of the variances of the measured torque values.
The assumption of noise free joint position measures can be justified by the fact that the joint
torque noise level is much higher than the noise level on position measurements.

As already mentioned, to improve the signal-to-noise ratio, the data sequences can be aver-
aged over a certain number of periods S. The averaged values and variances are calculated
according to the following formulas:

q̄i(k) =
1

S

S
∑

j=1

qi j(k) τ̄i(k) =
1

S

S
∑

j=1

qi j(k) (4.45)

σ2
qi
=

1

S− 1

1

S

S
∑

j=1

�

qi j(k)− q̄i(k)
�2

σ2
τi
=

1

S− 1

1

S

S
∑

j=1

�

τi j(k)− τ̄i(k)
�2

(4.46)

with P is equal to the number of samples per period k ∈ [1 . . . P], j represents the excitation
period, q̄i(k) and τ̄i(k) are the averaged joint positions and torque measurements at time in-
stance k, as well as σ2

qi
and σ2

τi
the variances of the joint positions and torque measurements

respectively.
With this averaged data the final model parameter estimation can performed. To receive the

not measurable joint velocities and accelerations, the averaged joint positions can be approxi-
mated by functions as splines and then analytical differentiated to receive the missing values.
After this preprocessing the analytical functions can be sampled to extract the time samples for
creation of the regressor matrix φt ot . The averaged joint torques are directly used to form the
torque vector τt ot . The diagonal weighting matrix Σ−1 is created with the reciprocal of the
torque variances σ2

τi
:

Σ−1
k =diag

�

1/σ2
τ1

, . . . , 1/σ2
τn

�

Σ−1 =diag
�

Σ−1
1 , . . . ,Σ−1

P

�

(4.47)

Such a wighting scheme is also described in [45] and controls the influence of the variable.
The larger the variance (uncertainty), the less this variable influences the least-squares solution
relative to the other variables.
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4.3 Parameter Identification on BioRob

The developed parameter estimation procedure is tested by simulation and experiment. Before
trying the estimation on the real robot, the algorithm was evaluated with the proposed Simulink
model of the 4-DoF BioRob-Arm in chapter 3.2.5. Aim is to determine all actuator side and load
side parameters. Both dynamic models, on actuator and load sides were calculated as described
in chapter 4.2.1 and chaper 4.2.2.

According to equation 4.4 for each joint, the created regressor form on actuator side contains
a 4× 16 regressor matrix, a 16× 1 base parameter vector and 4× 1 motor torque vector. As
explained above this linear equation system only included single unknown parameters, so that
all actuator parameters can be estimated without dependencies on other parameters. On load
side, the modified Newton-Euler recursion and preceding model reduction produced a regressor
form with a 4×22 regressor matrix, a 22×1 base parameter vector and 4×1 joint torque vector.
In contrast to the actuator side, most of the base parameters were linear combinations of model
parameters. After creation of both regression models the parameter identification algorithm can
be evaluated.

4.3.1 Evaluation by Simulation

Before getting the excitation trajectory, some decisions according to the following questions
have to be made. What kind of parameterized function is suitable for receiving an excitation
trajectory? What degree of the chosen function is suitable for the problem? And finally, what
is an appropriate observability measure? To answer these questions, a few optimization cycles
were carried out in context of excitation trajectories for actuator side. To evaluate the quality
of excitation trajectory the d-optimality criterion is used. The optimization is carried out for
Fourier-series and polynomial functions with degree three, four and five. As quality measure
(see [48]) the averaged relative error of the estimated parameters ϑes t in relation to the exact
parameters ϑ used in the simulation model:

εAV =
1

16

16
∑

i=1

�

�

�

�

ϑi − ϑest

ϑi

�

�

�

�

, (4.48)

the maximum relative error of the estimated parameters:

εMAX =
1

16
16

max
i=1

�

�

�

�

ϑi − ϑest

ϑi

�

�

�

�

, (4.49)

and the root mean square difference between the estimated τes t and measured τi torques:

εRMS =

s

1

P

P
∑

i=1

�

τi −τi,est

�2
(4.50)
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are used.
For optimization Matlab provides the nonlinear constraint optimization routine "fmincon".

This can be executed by different algorithms that are used during optimization. First of all
the routine needs two functions, one with the objective function (calculating d-optimality or
condition number in this case), as well as a nonlinear constraint function, that checks whether
or not the constraints are violated for the actual trajectory parameters. To evaluate the joint
and Cartesian constraints, the trajectories for all joints were sampled and the direct kinematic
is used to get the end-effector position. The function returns the l2-norm of the distance vector
to the bounds, regarding all sample points that violate the constraints or the l2-norm of the
distance vector regarding all sample points scaled with the minimum distance (to realize a
continuous change between trajectories with and without constraint violations). As Cartesian
constraints, one can imagine that the robot arm is placed on a tables corner and should not
collide with the tables surface behind it, as well as with its base. For this purpose a security
distance around the first link with a certain radius and the distance from the tables surface are
inspected. The resulting distance vector for all sample points is treated analogue to the joint
constraints. Thus the complete vector returned from this function contains n entries for the
evaluated joint constraints, and two entires for the Cartesian constrains.

The optimization algorithms provided for this routine are "interior-point", "trust-region-reflec-
tive" and "SQP". To determine the trajectory function, its degree and the optimization algorithm,
the actuator side optimization results are examined. The optimization loop starts with a ran-
dom set of trajectory parameters produces by the least squares approach described in chapter
4.2.3. This parameters do not obligatorily form trajectories that fulfill all joint and Cartesian
constraints. So this step is repeated till a valid trajectory is achieved. To check the constraints
and create the regressor matrix, the actual trajectory is sampled P = 2000 times per period
([37] used 1500 and [36] used 10.000 samples). As described above the averaged relative error,
the maximum relative error and the root mean square difference between estimated parameters
ϑes t and exact parameters ϑ used in the simulation model are computed. The results of the
optimization loop are shown in table A.1, A.2 and A.3. One can make four observations from
the optimization results:

• For both, the polynomial function and Fourier-Series, and their various degree, the SQP
algorithm needs the fewest iterations. The interior point algorithm only needs a few more
iterations. Significantly more iterations are needed by the trust region reflective algorithm.

• Accept for degree four, the parameter estimated by the interior point algorithm achieved
the smallest averaged and maximum relative error.

• The polynomial function with various degree always produced an estimation result with
a bigger averaged and maximum relative error, in comparison with the corresponding
Fourier-Series.

• The resulting root mean square error of the estimated elastic transmission torque are ten-
dentially smaller for Fourier-Series.

Since the interior point algorithm produces equal or better results than the sqp algorithm, with
only a few more iterations, this algorithm is used for parameter estimation. In addition the
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Fourier-Series with degree five, seems to outperform all other function-degree combinations, so
the interior point algorithm has to optimize this function, to produce an excitation trajectory.

Joint 1 Joint 2
exact estimated error exact estimated error

de [Nm·s
rad
] 0.20 0.156 4.35·10−2 0.20 0.20 2.01·10−4

dv,m [Nm·s
rad
] 3.072·10−4 6.901·10−4 3.83·10−4 3.630·10−3 9.634·10−4 6.00·10−4

ke [ Nm
rad
] 17.5 17.403 9.69·10−2 10.0 9.980 2.15·10−2

dC ,m [Nm] 0.016 0.0189 2.85·10−3 0.0209 0.0219 1.06·10−3

Joint 3 Joint 4
exact estimated error exact estimated error

de [Nm·s
rad
] 0.10 0.0827 1.73·10−2 0.10 0.0824 1.76·10−2

dv,m [Nm·s
rad
] 2.041·10−4 -7.538·10−5 2.80·10−4 2.315·10−4 2.759·10−4 4.44·10−5

ke [ Nm
rad
] 6.0 5.985 1.54·10−2 6.0 6.013 1.34·10−2

dC ,m [Nm] 0.0104 0.00996 4.72·10−4 0.011 0.0105 6.10·10−4

Table 4.2: Actuator side base parameters with the exact simulation value and the resulting
estimation

The trajectory which achieves the best results in the optimization procedure estimated the
actuator parameters listed in table 4.2. In a further step it has to be evaluated, if the estimated
parameters generalizes well, or if they only describes the actuator dynamics in the special case
of the exciting trajectory. For this purpose [37] used a validation trajectory that goes through 20
points randomly chosen in the workspace of the robot. Between these points the robot moves
with maximum acceleration and deceleration and stops at each point. In the case of the BioRob-
Arm the validation trajectory is constructed analogue, but with only six random chosen points.
The best and worst motor torque estimation result in joint space, from the determined actuator
model parameters, in case of the evaluation and excitation trajectory is depicted in figure A.1
and A.2. The corresponding quality measures for all joints are listed in table 4.3.

trajectories
evaluation excitation random

εRMS Joint 1 1.32·10−1 6.58·10−2 6.25·10−2

εRMS Joint 2 1.95·10−1 3.94·10−2 9.07·10−2

εRMS Joint 3 4.28·10−2 8.84·10−2 6.32·10−2

εRMS Joint 4 1.34·10−1 4.76·10−2 2.91·10−1

Table 4.3: Error of motor torque estimation received from estimated actuator model

The root mean square error of the estimated motor torques in table 4.3 show that the esti-
mation is more accurate for the excitation trajectory. But even the motor torques needed to
track the evaluation trajectory are well estimated. One cause for the accuracy loss could be the
discontinuous desired values of the evaluation trajectory forces the controller to produce high
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torque peaks and oscillation as shown in figure A.1. As neutral and every day trajectory, the
model is also evaluated with a random trajectory, produced like the initial trajectories for the
optimization process. Since this trajectory is continuous, the controller produces continuous
desired values. This behavior is common to the behavior in a standard pick and place task and
nearly produces the same accurate torque estimation than for excitation trajectory.

The load side parameters are estimated analogue to the actuator parameters. Additionally the
optimization is done two times, with d-optimality and with the regressor’s condition number as
objective function. [37] and [45] suggest, that the d-optimality criterion is the most suitable
observability index for parameter identification. In contrast to this statement [36] received a
small improvement using the condition number as observability criterion. Because this matter of
fact it seems to be advisable investigate the results of both measures in case of the BioRob-Arm.
This is done during load side parameter estimation.

To facilitate the load side parameter estimation, the model parameters used in the Newton-
Euler recursion to create the dynamic equations can be slightly reduced. Since the link coordi-
nate frames are attached to the links center of mass, the cross products of inertia are identically
zero, if the mass distribution is symmetric with respect to the center of mass (see [44]). This
assumption holds for link one, three and four. At link two, only the x-z-plane and y-z-plane have
symmetric mass distributions. As consequence, the following cross product of inertia can be set
to zero: I1,x y = I1,xz = I1,yz = I2,xz = I2,yz = I3,x y = I3,xz = I3,yz = I4,x y = I4,xz = I4,yz = 0. Because
of the symmetric mass distribution also the possible center of mass positions can be reduced
to the y-axis in link one, the x-y-plane in link two, as well as the x-axis in link three and four,
which leads to : r1

c1,x = r1
c1,z = r2

c2,z = r3
c3,y = r3

c3,z = r4
c4,y = r4

c4,z = 0. To receive the regressor matrix
fulfilling this simplifications, the columns to the corresponding parameters are set to zero before
eliminating the linear dependent columns.

D-Optimality Condition Number
# interation 4 4
# func. eval. 279 267
obj. function 57.54 58.15
εAV 1.11 1.74
εMAX 6.48 10.87
εRMS Joint 1 4.31·10−3 3.04·10−3

εRMS Joint 2 3.42·10−3 3.45·10−3

εRMS Joint 3 3.08·10−3 2.79·10−3

εRMS Joint 4 1.68·10−3 2.94·10−2

Table 4.4: Trajectory optimization results and accuracy for load side

After this simplification the estimation with both trajectories received from optimization of
d-optimality and condition number provided good estimation results. Further the root mean
square error of the estimated elastic transmission torque during the evaluation trajectory for
both parameter estimations are almost identical. This suggests that the d-optimality and con-
dition number are suitable observability measures in this case. Since the d-optimality show a
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slightly improvement, regarding the averaged and maximum relative error, compared to the
condition number, this observability measure is used for the experimental identification in the
next section. The above described optimization and validation results are shown in table 4.4.
To illustrate the load side estimation accuracy the best and worst elastic transmission torque
estimation is depicted in figure A.3.

physical meaning exact estimation of ϑ error
I1

y y + I2
y y − I2

zz + I3
y y − I3

zz + I4
y y − I4

zz 0 -0.00176 1.76·10−3

d1 0.50 0.497 2.58·10−3

I3
zz/l

2
3 − I2

zz/l
2
2 +m2 -0.416 -0.420 4.29·10−3

I2
zz/l2+m2 · rc2,x 0.160 0.159 5.53·10−4

m2 · rc2,y 0.0 6.884·10−8 6.88·10−8

I2
x x − I2

y y + I2
zz 0.00888 0.00991 1.03·10−3

I2
x y 0.0 -6.134·10−5 6.13·10−5

d2 0.50 0.498 1.56·10−3

I4
zz/l

2
4 − I3

zz/l
2
3 +m3 0.208 0.253 4.56·10−2

I3
zz/l3+m3 · rc3,x 0.0103 0.00821 2.13·10−3

I3
x x − I3

y y + I3
zz 0.00320 0.00252 6.81·10−4

d3 0.50 0.501 6.95·10−4

m4− I4
zz/l

2
4 0.0292 -0.0101 3.92·10−2

I4
zz/l4+m4 · rc4,x 0.000601 0.00449 3.89·10−3

I4
x x − I4

y y + I4
zz 6.189·10−5 4.251·10−4 3.63·10−4

d4 0.50 0.501 1.06·10−3

Table 4.5: Load side base parameters with the exact simulation value and the resulting estimation

Table 4.5 show the base parameter set, their exact and estimated value. According to the high
overlapping of the estimated and measures elastic transmission torques (see figure A.3) the base
parameter estimation error is very small for most of them.

4.3.2 Experimental Identification

The optimized trajectories for actuator and load side, where both executed on the BioRob-Arm to
estimate the real model parameters. Since Fourier-Series are used to describe the trajectories,
they simply can be repeated S times and than averaged, to improve the signal-to-noise ratio.
In the actual case the trajectories for actuator side and load side parameter estimation where
repeated S = 16 times. Before performing parameter estimation with the BioRob-Arm, two
problems have to mentioned. First, there are only motor and joint position available, and second
no motor torque informations are present.

To create the motor together with joint velocities and accelerations one can use numerical
differentiation. But this procedure has the drawback of amplifying high frequency noise, inher-
ently existent because of sensor quantification (see. [48]). To avoid this, the position samples
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are piecewise fitted by splines which are then differentiated two times, generating smooth ve-
locity and acceleration informations. The motor torque information can be produced by the
following equation from [44]:

τm = kt · ia, (4.51)

with τm the motor torque vector, kt the torque constant vector provided by the motor manu-
facturer (each entry belongs to one actuator) and the corresponding armature current ia at the
actual time step. Since the motor current sensor only produces a 14 bit signal, one has to inter-
pret this information and project it into its physical meaning. This is realized by measuring the
actual motor current and sensor signal while the motor produces a certain torque. The recorded
sensor signal is mapped to the current signal to determine the correct conversion factor. After
this conversion the produced current represents the absolute value of the effectively used mo-
tor current. One way to identify the right current direction and thus the right motor torque
direction, is to use the motor voltage and the following equation:

i′a = (u − kv · θ̇ )/Ra, (4.52)

with u the actual motor voltage, kv the motor speed constant, θ̇ the motor velocity and Ra the
terminal resistance. The calculated value i′a represents the motor current, corresponding to the
actual motor voltage without the influence of friction. The aim is to infer from the sign of i′a to
the sign of the real current ia. Since friction, not considered in i′a, can change the amplitude and
the roots of the motor current, the sign of i′a can not directly used as sign for the real current
ia. But the roots of i′a indicate a zero crossing in measured the motor current near this time
instance. So if a zero crossing in i′a occurs at time instance t, the minimum of ia at the time
window t−ε≤ t ≤ t+ε is defined as real zero crossing and the sign of ia is switched (ε is set to
0.15 seconds). After this procedure the signed motor current is provided to calculate the signed
motor torque. The intermediate stages of this procedure are shown in figure 4.1. The black lines
represent the motor current without friction i′a and its sign. The red line forms the raw motor
current sensor corrected with the determined conversion factor. One can see, that for each zero
crossing in i′a, the final zero crossing is determined by the minimum of ia,r aw , resulting in the
green curve ia. The final motor torque τm is than calculated with 4.51.

If the motor torques, as well as the motor and joint positions, velocities and acceleration are
available, the estimation procedure can be executed as described for the simulation. The vari-
ances and averages are calculated as described with equation 4.45 and 4.46. To carry out the
weighted least squares estimation the motor or rather the joint position, velocity and acceler-
ation have to be free of noise. As listed in table 4.6 this variances are in order of magnitudes
smaller than the motor torque variances.

The weighted least squares estimation provided the actuator side parameters shown in table
4.7. Since the spring stiffness ke,1 and spring damping coefficient de,i are negative, these param-
eters have to be set to a plausible value (mechanically negative damping or spring stiffness is
not possible). The described Matlab simulation model is used to find the excitation trajectory.
The simulation model parameters heavy differ from the real ones. This causes motor positions
in the experiment that differ from the motor positions that are produced by the trajectory in
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Figure 4.1: Example of motor torque calculation form the measured motor current

σ2
τi

σ2
qi

σ2
θi

Joint 1 1.93 3.14·10−4 1.59·10−4

Joint 2 3.54 4.61·10−4 3.37·10−4

Joint 3 3.19 1.06·10−3 7.98·10−4

Joint 4 4.91 6.24·10−4 1.05·10−3

Table 4.6: Variances of actuator side parameter estimation

simulation. Thus, the created excitation trajectory in the simulation model must not be perfect
for the real model. After the first identification try, the estimated parameters can be used in the
simulation model to repeat the whole estimation loop, till the simulation model converges to
the real model. The plausible values are set to the absolute value of the negative ones. This cor-
rection just marginally influences the quality of the estimation. The root mean square error per
joint of the measured and estimated motor torque, as well as the error without the parameters
absolute values are listed in table 4.8. The corresponding torque curves of the best and worst
result are depicted in figure 4.2

Joint 1 Joint 2 Joint 3 Joint 4
de [Nm·s

rad
] 0.354 2.031 0.0194 |−2.401|

dv,m [Nm·s
rad
] 1.716 1.814 0.580 0.516

ke [ Nm
rad
] 0.563 16.338 3.583 6.228

dC ,m [Nm] 0.145 0.504 0.140 0.443

Table 4.7: Estimated actuator side base parameters after identification experiment
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estimated corrected
εRMS Joint 1 0.172 0.171
εRMS Joint 2 0.329 0.329
εRMS Joint 3 0.300 0.300
εRMS Joint 4 0.300 0.374

Table 4.8: Error of motor torque estimation received from experimental actuator identification

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [s]

T
o
rq
u
e
[N

m
]

Estimated and measured motor torque

 

 

τm measured
τm estimated

(a) Best motor torque estimation for excita-
tion trajectory
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(b) Worst motor torque estimation for excita-
tion trajectory

Figure 4.2: Measured and estimated motor torques in case of the excitation trajectory with cor-
rected parameter values

After identification of the actuator model parameters, it is possible to calculate the elastic
transmission torque and thus build up the equation system for the load side base parameter
estimation. After recording the load side excitation trajectory, again the variances of the acting
torques and the joint positions are calculated. These are listed in table 4.9. As for the actuator
side the joint position variances are very small. Since the acting torques of the elastic trans-
mission τel are calculated with the estimated parameters and the measured joint and motor
positions, these are nearly free of noise and also produce a small variance.

σ2
τel

σ2
qi

Joint 1 9.27·10−3 1.69·10−4

Joint 2 2.76·10−1 7.74·10−4

Joint 3 4.65·10−3 3.94·10−4

Joint 4 2.31·10−1 1.14·10−4

Table 4.9: Variances of load side parameter estimation
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Again, the torques and joint position are averaged over the recorded period. The resulting
equation system for the load side base parameters produced the values shown in table 4.10.

physical meaning estimation of ϑ
I1

y y + I2
y y − I2

zz + I3
y y − I3

zz + I4
y y − I4

zz -0.00935
d1 -0.0141
I3
zz/l

2
3 − I2

zz/l
2
2 +m2 0.0981

I2
zz/l2+m2 · rc2,x -0.0417

m2 · rc2,y -0.00126
I2

x x − I2
y y + I2

zz 0.00869
I2

x y -0.000840
d2 -0.0663
I4
zz/l

2
4 − I3

zz/l
2
3 +m3 0.679

I3
zz/l3+m3 · rc3,x -0.0345

I3
x x − I3

y y + I3
zz 0.00554

d3 0.0267
m4− I4

zz/l
2
4 -0.484

I4
zz/l4+m4 · rc4,x 0.0469

I4
x x − I4

y y + I4
zz -0.00167

d4 -0.0495

Table 4.10: Experimental estimation of load side base parameters

In contrast to load side base parameter estimation on the Matlab simulation model no joint
torque sensors are available for the real robot. Thus it is not possible to directly compare the
elastic transmission torque from the robot with the resulting torque from load side estimation.
As shortly explained in chapter 2 a fault detection and isolation scheme tries to detect system
faults comparing the system output with the output of an model-based observer. One possible
observer will be introduced in chapter 5. The calculated residual of the system output and the
observer output can not only be used to detect collisions, but also to determine if the model
corresponds to the real system. This enables to evaluate the quality of the identified model.
As already described, in most cases only linear combination of the single model parameters
can be estimated. These base parameters ϑ in combination with the base regressor φ describe
the whole actuator and load dynamics. Before using the observer, the dynamic matrices have
to be extracted from the equation of motion τ = φϑ. This extraction is done as described in
chapter 3.3 and produces the mass matrices M(q ,ϑ), the Coriolis matrix C(q , q̇ ,ϑ), the friction
matrix F(q , q̇ ,ϑ) and the gravity vector g (q ,ϑ) in dependence of the joint positions q , joint
velocities q̇ and the to be estimated base parameter vector ϑ = (ϑ1,ϑ2, . . .)T . After this step the
residual can be computed using the joint positions and velocities of a recored trajectory, the
estimated load side parameter vector ϑ and the computed elastic transmission torque τel using
the estimated spring stiffness ke and spring damping de. To better appreciate the estimated
model the evaluation is done two times, first with the original Matlab simulation model that
is used for excitation trajectory estimation, and second with the estimated model parameters.
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Comparing the produced residuals using both models, one can see that the original estimation
was far away from the real model. Apart from joint one, every joint produces a failure torque
that is bigger than 1.5 Nm. After identification the joint torque failure is reduced to at most 0.2
Nm except for joint two.
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Figure 4.3: Evaluation of experimental identified model using a model-based observer

Since the excitation trajectories are optimized upon the Matlab simulation model that does not
really represent the real robot (see figure 4.3(a)) it is likely that these trajectories are optimal
for the simulation model, but not for the real robot. The model parameters, estimated after
this fist iteration, have to be used to produce new excitation trajectories for a next estimation
iteration. This loop has to be repeated till the model converges 1.

To use the estimated model parameters for the Matlab simulation model the single model pa-
rameters have to be extracted from the linear combined base parameters. This task is not trivial
since many parameter values describe the same result in linear combination. One possible ap-
proach to find the parameter set, that describes the estimated base parameters, a optimization
algorithm can be used that minimizes the least squares difference, between the estimated pa-
rameter values and the resulting value that originate from the parameters linear combination.
This optimization problem can be formulated as:

min
p∈ℜnp

1

2

np
∑

i=1



baseParameters(p)−ϑes t





2

2 s.t. a(p)= 0, b(p)≥ 0

with p the single model parameters to identify, baseParameters(p) the base parameter values
with the current single parameter set p and ϑes t the estimated base parameters. To support the
optimization algorithm, the value range of the single parameters can be reduced by inequality
1 [37] also proposed a methodology that perform estimation procedures till the model converge
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constraints b(p) or even set to a predefined value a(p). The initial values for optimization have
to be carefully be chosen in order to find a solution that is near the real one.

Instead of using the Matlab simulation model for the next trajectory optimization loops, the
model parameter dependent dynamic equations (actuator and load side) can directly be used to
calculate the motor and joint Informations, that are necessary to compute the regressor matrices
for trajectory evaluation.

4.4 Conclusion

The parameter identification framework presented in this chapter combined two approaches to
enable model identification on a robot model with elastic joints. If only the load side estima-
tion is considered, it is possible to use this for a standard rigid industrial robot, without high
elasticities.

The parameters are estimated using a dynamic identification scheme that identifies the pa-
rameters with the robot in motion. To realize this a least squares approach is used:

ϑ = (φt ot
Tφt ot )−1φt ot

Tτt ot .

To solve the estimation equation system the regressor matrices for both sides have to be deter-
mined. First, the actuator side base regressor is theoretically created by just rearranging the
dynamic equations and putting parameter independent expressions, unknown parameters or
products with unknown parameters together.

The base regressor form of the load side dynamics model is received by using a modified
Newton-Euler recursion. This recursion is introduced with the modification to express the in-
ertia tensor in the link coordinate frame using the parallel-axis theorem. Since the generated
regressor matrix does not have full rank, it has to be reduced by eliminating all linear depen-
dent columns. For this purpose the fundamental functions of the dynamic equations are used,
building up a matrix that represents the linear dependencies of the regressor. After transforma-
tion in to the Echelon from, this matrix can be used to eliminate all linear dependent regressor
columns, as well as to create the base parameter set.

For dynamic Estimation an appropriate trajectory is necessary that excites the system in such
a way, that all parameters can be well estimated. For this purpose polynomial trajectories and
Fourier-Series are introduced. The trajectory parameters are detected by optimizing an observ-
ability index that evaluates if the resulting regressor matrix for the actual trajectory is suitable
to solve the linear equation system. Using Fourier-Series as trajectory allows to average the
recorded values (e.g. joint positions or torques) and calculate the torque variances. These
variances are used to create a weighted least squares estimate:

ϑw ls =
�

φt ot
TΣ−1φt ot

�−1
φt ot

TΣ−1τt ot

with the diagonal weighting matrix Σ−1 consisting of the reciprocal torque variances.
The whole estimation framework is carried out on the Matlab simulation model. For evalu-

ation different quality measures are shortly introduced. To find the right trajectory function,
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optimization algorithm and observability measure, different estimations are accomplished and
evaluated. It turns out that using the interior point optimization algorithm with Fourier-Series
trajectory function and D-optimality as observability index produces the best identification re-
sults in case of the BioRob-Arm. In the next step the optimized trajectories are carried out on
the real robot. But before the estimation process can be executed an approach for inferring the
motor torques from motor current is described.

At last the estimation results are presented and evaluated using the observer-based fault de-
tection and isolation scheme. The produced residual show a significant model improvement in
comparison to the original model, used in the Matlab simulation. But even this improvement is
not enough to realize a fast collision detection. This can be constituted by the used model dur-
ing optimization of the excitation trajectories. Since this used model parameters are far away
from the real ones, the produced trajectories are not optimal for the real robot. Thus the identi-
fication process has to be repeated with the new estimated model parameters, till it converges.
Since the Matlab model used for trajectory optimization needs the single model parameters,
these have to be extracted from the base parameter set. To realize this an optimization problem
has been formulated. One way out of this is to use a on line optimization scheme, that directly
tries out and evaluates the trajectory with its actual parameters. Alternatively the parameter
dependent dynamic equations can be used during optimization to create the motor and joint
information that are necessary for trajectory evaluation.

Another reason for a difference between the estimated and the real model is founded in the
model itself. The presented model actual is build up as simple as possible. After successful iden-
tification this model has to be refined, taking into account that the elastic transmission consists
of nonlinear spring characteristics with hysteresis. The assumed friction model is inexact and
does not represent the real friction behavior. For this purpose a more complex model, as the
Stribeck friction model should be embedded. In addition to the simple friction model, also no
backlash effects are considered in the whole model.
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5 Collision Detection and Reaction

5.1 Introduction

Collision detection and an appropriate reaction is the basis for robots and humans working safely
together. One example for the need of robots and humans cooperating are small and medium
enterprises (SMEs). As mentioned in [4], there are four key requirements for applications with
an unstructured and shared environment: safety, flexibility, usability and performance.

One way to increase safety is a lightweight design with compliant cable/spring transmission
that decouples the reflected motor inertia off the impact force, like at the BioRob-Arm.

As introduced by [7], there are a lot of different contact scenarios where this is simply not
enough. Figure 5.1 shows the different undesired contact scenarios between human beings and
robots that could lead to injury of humans. They are classified in free impacts, clamping in
the robot structure, constrained impacts, partially constrained impacts, and resulting secondary
impacts.

Figure 5.1: Classification of contact scenarios between human and robot (from [7])

For all this scenarios a collision detection can resolve a dangerous or at minimum unpleasant
situation. A lot of research effort has been done by Haddadin et al. (see [7]) to evaluate safety
requirements for robots. He investigated the effect of joint stiffness, the role of robot mass and
velocity with non-constrained blunt impacts or constrained blunt impacts. One major conclusion
([8]) was that the HIC (Head Injury Criterion) index seems not to be suitable to evaluate the
injury level of robots, since the operation speed is much to slow to harm people according to
this criterion. This is why for future severity evaluation the force, needed to cause fractures,
was investigated. Non-constrained blunt collision tests showed that only the link inertia is
involved in the impact, and increasing the joint stiffness has no effect on hard impacts ([14],
[7]). Before the joint torque starts to act into the collision, the collision force transmission
caused by the link inertia is over. This leads to the conclusion that a collision detection and
reaction mechanism is at maximum capable to reduce the impact forces caused by joint torques,
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but not by the link inertia. Decreasing the joint stiffness only decreases the spring force in
magnitude and increases the duration. If in addition to a moderate joint stiffness the impact
duration is increased a reliable collision detection can decrease the acting impact forces ([11])
caused by both, the joint torques and the link inertia. For example a collision with soft body
parts result in a longer impact duration, than collisions with the head. Even for a constrained
collision with a human head near a singular joint configuration, the used collision detection is
able to prevent a facial fracture ([10]). Beside non-constraint or constraint collisions especially
for a human-robot interaction it is necessary to know what injury risk is effected by a robot arm
equipped with sharp tools. [49] created some fundamentals for soft-tissue injury evaluation,
with various sharp tools. It was shown that the used collision detection provided a large benefit
in reducing the penetration depth at stabbing or cutting experiments.

The results show that a reliable collision detection is reasonable to reduce injury risk in differ-
ent all day work scenarios. To evaluate how suitable the BioRob-Arm is for a safe human-robot
interaction, as was done for the DLR Lightweight III arm, the acting forces in critical situations
have to be investigated and the influence of a collision detection on security tested in experi-
ments. But before this ca be done, a reliable collision detection with an appropriate reaction
strategy has to be implemented. As described in [3] the observer-based collision detection pro-
posed by [23] fits for the BioRob-Arm since it only needs the elastic transmission torque τel ,
joint position q and velocity q̇ . The elastic transmission torque can be simply computed using
the spring stiffness ke and damping de, whereas the joint velocity has to be carefully determined
from the joint position using noisy numerical differentiation.

Modell

Residuum
Calculation

Residuum
Evaluation

Diagnosis Algorithm

r ≈ τext

τc q

fext

Real Robot

Rigid Body
Dynamics

Elastic 
Drive Train

τF

q∙

τel

f ≈ fext
^

Figure 5.2: Structure of fault detection and isolation with disturbance observer (control variable
τc , measured system output q , q̇ , residuum r , estimated joint torque caused by exter-
nal force τex t , external force fex t , motor friction τF , elastic transmission torque τel)

Figure 5.2 illustrates the structure of the realized fault detection and isolation using a distur-
bance observer. The control variable describes the desired motor torque. The transmitted torque
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to the rigid structure τel , produced from the motor under influence of motor friction torque τF ,
serves as one input for the observer. The measured joint position and velocity represents the
system output and are also used as input for the observer. The external force fex t that influences
the system is estimated by the observer as joint torques τex t and can be converted into a force
in Cartesian space f̂ that approximates fex t . The used observer from [23] uses the generalized
momentum p = M(p)q̇ to detect disturbance forces where the estimated joint torque caused by
external forces r is a first-order filtered estimation of the real external joint torque τex t .

A collision detection based on this observer has been implemented at the Matlab simulation
model of the BioRob-Arm ([3]). The simulation results showed that a reliable collision detection
based on this observer is possible and also allows to avoid the torque caused by the reflected
motor inertia to act into the collision. The proposed reaction strategies of [24] have also been in-
vestigated. A "admittance control reaction" strategy produced one of the fastest collision torque
and joint velocity reduction. It uses the estimated collision torques to calculate a new desired
joint velocity moving the robot arm out of the collision. If no collision is present any more,
the residual and therefore the new desired velocity is zero, causing the robot arm to hold the
position as soon as possible, reducing the likelihood of a second collision. This behavior can be
described in the following formular:

qd = qcol +

∫

KRr , q̇d = KRr , (5.1)

with qcol the joint position at collision detection, r the residual, KR a diagonal matrix that
converts the torques of r into a plausible value range for joint velocity, qd and q̇d the new
desired joint position and velocity respectively. Another simulated result showed that it is not
possible to cause facial fractures. To validate this results by experiment a reliable collision
detection has to be implemented. The collision detection methodology and some first collision
tests are described in this chapter.

5.2 Methodology of Collision Detection

This section shows the main steps to receive the first-order filtered joint torque, caused by an
external force (as introduced by [23]). for additional information about the described equations
please consult [23] or [3]. The generalized momentum of the robot is used to calculate a
residual which represents the system disturbance. It is defined according to Newton’s second
law:

p = M(q)q̇ (5.2)

with p ∈ ℜn the momentum, M(q) ∈ ℜn×n the robots mass matrix and q̇ ∈ ℜn the vector of joint
velocities. After differentiation one receives the dynamic equation that describes the momentum
changes of the robot arm:

ṗ =
d

d t
�

M(q)
�

q̇ +M(q)q̇ (5.3)
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In case of an external force influenceing the robot our in 3.2 described dynamic robot model
has to be extended. The joint torques caused by the external force τex t has to be added to the
elastic transmission torque τel . The whole dynamic equation solved for the mass matrix results
in:

M
�

q
�

q̈ = τel +τex t −C
�

q , q̇
�

q̇ − g
�

q
�

− F
�

q , q̇
�

q̇ (5.4)

The skew symmetric mass matrix M
�

q
�

and the Coriolis matrix C
�

q , q̇
�

(defined with the
Christoffel symbols) can be combined to another skew symmetric term Ṁ

�

q
�

−2C
�

q , q̇
�

. From
the skew symmetry of this term it follows that:

Ṁ
�

q
�

= C
�

q , q̇
�

q̇ +C
�

q , q̇
�T (5.5)

The proof of equation 5.5 is shown in [3]. After combining the equations 5.3, 5.4 and 5.5 the
momentum derivative can be expressed as:

ṗ =
�

C
�

q , q̇
�

+C
�

q , q̇
�T� q̇ +τel +τex t −C

�

q , q̇
�

q̇ − g
�

q
�

− F
�

q , q̇
�

q̇

= τel +τex t −
�

−C
�

q , q̇
�T q̇ + g

�

q
�

+ F
�

q , q̇
�

q̇
�

︸ ︷︷ ︸

α(q ,q̇)

⇒ ṗ = τel +τex t −α(q , q̇) (5.6)

Solving equation 5.6 for τex t delivers an expression that represents the torques caused by
external forces without calculation of the joint acceleration:

τex t = ṗ −τel −α(q , q̇) (5.7)

Equation 5.7 could be used as residual for fault detection, if it is robust against noisy sensors.
Since this is not the case, a further step has to be done. To reduce the influence of noise a
first-order low pass filter is used which smooths high frequent signals. One way to realize a low
pass filtered signal is to use a first order lag element as described by the following equation in
time domain:

Ti · ṙi + ri = τest,i

ṙi =−
1

Ti
ri +

1

Ti
τex t,i (5.8)

with τex t,i as input value, ri and ṙi the smoothed output and its derivate respectively as well as
Ti the time constant which describes the reaction rate at which the filter react on a step in the
input signal. Since the residual is a n× 1 vector, each vector entry has to be filtered. Writing
equation 5.8 as matrix vector equation and substituting τex t by 5.7 defines a first ordered filtered
derivative of the residual:

ṙ =−K I r + K Iτex t

= K I
�

ṗ −τel −α(q , q̇)− r
�

(5.9)

60 5.2 Methodology of Collision Detection



with K I as diagonal matrix representing the filters time constant defined by the reciprocal 1/Ti.
The final step to receive the residual is to time integrate equation 5.9:

r =

∫ t

0

�

K I
�

ṗ −τel −α(q , q̇)− r
��

d t

=

∫ t

0

�

K I

�

ṗ −τel −C
�

q , q̇
�T q̇ + g

�

q
�

+ F
�

q , q̇
�

q̇ − r
��

d t

= K I

�

p(t)−
∫ t

0

�

τel +C
�

q , q̇
�T q̇ − g

�

q
�

− F
�

q , q̇
�

q̇ + r
�

�

d t − p(0) (5.10)

In equation 5.10 r (0) = 0 defines the start value of the residual, K I > 0 the diagonal matrix of
the filters time constants and p(t) the generalized momentum at time t ≥ 0.

As already explained, the time constant Ti defines the filters reaction speed on a step in the
input signal. A small time constant results in a nearly unfiltered output and hence closely
represents the real acting joint torque r ≈ τex t . The trade-off between filtering and estimated
torque accuracy has to be considered when choosing the filters time constant. The smaller the
time constant, the higher the estimation accuracy. But if chosen to small, noise distorts the
estimation. Since K I contains the reciprocal time constants on its diagonal one has to choose
K I as high as possible regarding the influence of noise. Another issue with a very small time
constant is that the built reciprocal causes numerical problems.

Before using the residual it is important to know how it is built and at which conditions it
is able to detect external forces. One distinguishes between external forces that arise in static
or dynamic cases. In static cases (q̇ = 0) it is possible to formulate a relation between the
external force and the resulting joint torques using the virtual work. The work produced by an
external force F , causing a virtual displacement δX of the end-effector and the joints δq , and
the corresponding joint torque τ has to be the same ([50]):

τTδq = F TδX (5.11)

The virtual displacement of the Cartesian and joint space are related to each other with the
Jacobian matrix ([44]):

δX = J(q)δq (5.12)

Substituting 5.12 in equation 5.11, one gets a direct relation between the at the end-effector
acting force and the resulting joint torque:

τ = J(q)T F (5.13)

Since only linear forces at the end-effector are important, one further just need the linear part
of the jacobian, that is calculated as follows:

0J i(q) =
∂ 0ri(q)
∂ q

(5.14)
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The vector 0r i that describes the position of i-th link coordinate frame with respect to the world
coordinate frame is created using the transformation matrix, that expresses the orientation and
position of the link coordinate frame with respect to the world coordinate system 0T i(q):

0T 1(q1) ·1 T 2(q2) · . . . ·i−1 T i(qi) =
0 T i(q) =

�

0Ri(q) 0r i

0T 1

�

(5.15)

Equation 5.15 constitutes that 0r i only depends on the first i joint positions and causes the last
N − i columns of the Jacobian matrix to be zero:

0J i(q) =

�

∂ 0ri(q)
∂ q1

,
∂ 0ri(q)
∂ q2

, . . . ,
∂ 0ri(q)
∂ qi

, 0, . . . , 0

�

(5.16)

If now a external force acts on link i the residual estimated this force r ≈ τex t . With the relation
5.13 and how the Jacobian matrix is built, it follows that r ≈ τex t =0 J(q)T Fex t and only the
first i columns of residual are different from zero (∗):

r = [∗ . . . ∗ ∗ 0 . . . 0]T

↑ ↑ (5.17)

i+ 1 . . . N

This shows that in static cases, it is possible to detect external forces and even isolate at which
link they are acting. That this property also holds at the dynamic case can be illustrated with
the residuals dynamic equation 5.9. Only the external torque τex t influences the residual which
indicates that the behaviour in dynamic cases will not differ greatly from the static behavior.

For a reliable fault detection and isolation the residual has to be zero as long as no fault is
present. That this is fulfilled can also be explained with the residuals dynamic 5.9. If no external
torque is present τex t = 0 the residual does not change and keeps its initial value. In case of a
collision τex t will differ from zero and the residual will approximate this torque corresponding
to its time constant. If the collision is resolved the residual will again be zero.

5.3 Implementation and Experiments

As described in section 5.2 the residual for detecting external forces needs the joint torque,
determined with the elastic transmission torque τel , the joint positions q , and velocities q̇ . The
elastic transmission torque is computed with the estimated spring stiffness ke and damping
de. q is directly available from the joints rotary encoder but q̇ has to be carefully computed.
This implementation issue and how the residual is used in the BioRobApp will be discussed in
this section. Additionally, the program’s first collision tests are performed on the BioRobApp
simulation model.

The easiest way to compute the joint velocity from the joint positions is to use numerical
differentiation, e.g. with the backward difference quotient. Since the joint position sensor values
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are quantified, the resulting joint velocities are very noisy. Figure 5.3(a) shows the resulting joint
velocity of the backward difference quotient that has been low pass filtered. A weighted linear
regression of the last n joint positions to approximate the slope produces significantly less noise
(see figure 5.3(b)). The time information of all considered joint positions is used to create a
exponential decreasing weight during the regression. Thus the joint positions near to the actual
time instance have higher influence on the slope estimation than the older ones. Similar to the
first order filter this method has the drawback of a delayed result. The delay is determined by
the number of data points that are used during the regression. In addition the estimated joint
velocity shown in figure 5.3(b) has also been slightly filtered.
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Figure 5.3: Comparing joint velocity calculation of backward difference and weighted linear re-
gression regarding noise

To evaluate the effect of the joint velocity, calculated with backward difference and linear
regression the robot’s joint are rotated one after another by 90 degrees. As one can see in
figure 5.4(a) the backward difference calculation produces a very noisy residual so that no
collision detection can be realized with this computation method. In contrast, the generated
residual using the linear regression generates a smooth signal (see figure 5.4(b)). Whereas
the noisy residual produces values that even exceed 6 Nm, the noise free signals only show a
smooth oscillation that does not produce values bigger then 0.1 Nm. The oscillation is caused
by the produced delay when calculating the joint velocity and controller parameters that do not
perfectly fit to the simulation model. But even under this circumstances a collision detection can
be realized with a collision threshold of e.g. 0.2 Nm. Since the linear regression method seems
to be working well, it will be used to calculate the joint velocities in the following collision test.

Before performing a collision test with the BioRobApp, an obstacle with an appropriate contact
model has to be created. To realize a compliant contact model a simple linear spring-damper
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Figure 5.4: Effect of a noisy joint velocity signal on the residual calculation

model can be used. This is computationally simple but has some weaknesses. These weaknesses
and a more appropriate nonlinear contact model are presented in [51] and will be described
in the following paragraph. The linear spring-damper contact model can be described by the
equation:

f =−d ẋ − kx , (5.18)

with f the resulting force, d the spring damping coefficient, k the spring stiffness coefficient, x
and ẋ the penetration depth and velocity. The first weakness of this model is the discontinuity
at the moment of impact. In fact, the force produced by the spring is zero, but the acting
damping force steps from zero to −dvi with vi the impact velocity. The second weakness is
that this approach tends to hold the collided object together just before separation. So not only
compression forces are simulated also tensile forces are produced just before separation. The
tensile forces are produced, since x tends to be zero and ẋ will be negative and nonzero at
the moment just before separation. This results in a force −dv0 (v0 < 0) that holds the objects
together. To overcome this weaknesses Hunt and Crossley proposed a nonlinear spring damper
model:

f =− (λxn) ẋ − kxn, (5.19)

with the power n depends on the surface geometry. In this model the produced damping force
not only depends on the impact velocity, but on the penetration depth. This results in a con-
tact force that evolves continuously from zero upon contact and returns to zero as separation
approaches. The coefficient of restitution e represents the ratio of speed after and before an
impact. That means that objects, solid or elastic, can be calculated by equation 5.20

e = 1−αvi, (5.20)
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if λ is chosen with equation 5.21

λ=
3

2
αk, (5.21)

for sufficiently small α. The contact model used in the simulation uses n= 1, which corresponds
to an impact on a flat surface, e = 0.8, k = 10kN/m, and α= 0.04.

The collision test is carried out with an obstacle that is modeled using equation 5.19. The
robot arm starts in the vertical position and joint two is controlled to reach 120 degrees. The
obstacle is placed in the workspace that the collision occurs when the end-effector reaches the
height of l1 (q2 = 90◦). Since the penetration depth is calculated x = l1 − ez, with ez being the
z-coordinate of the end-effector, the simulated collision represents a constrained one.

During the movement of the BioRob-Arm, the control loop calculates the residual in each step
relative to the controller frequency and checks whether the norm exceeds the collision threshold
of 0.1Nm. If this is the case the collision reaction strategy 5.1 is activated and the new desired
values are calculated accordingly. As described above, the reaction strategy uses the residual
information to calculate the velocity, that moves the robot arm out of the collision with the
conversion factor KR = E · 0.03, E ∈ ℜ4×4 identity matrix. First a collision without reaction is
carried out (see figure 5.5(a)). Here, the detected joint torque increases till the maximum torque
is reached. In contrast to this behavior, the collision strategy successfully reduces the detected
joint torques after collision detection (see figure 5.5(b)). Besides the reaction of collision forces,
figure 5.5(b) shows that the time till the collision is dissipated takes approximately one second,
which is far to long to avoid that the reflected motor inertias act into the collision. After knowing
that the implemented collision detection works it should be tested with the real robot. It is
advisable to investigate the acting collision forces and their reduction with appropriate force
sensors. After this, the real collision characteristics can be analyzed and it can be evaluated how
the collision detection can improve safety.
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Figure 5.5: Residual of the collision test, with and without reaction strategy
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5.4 Conclusion

This chapter first introduced a collision scenario classification. All these scenarios can occur if
robots and human beings work together in the same environment. A short overview is given
how the impact type, joint stiffness, and the collision duration influence the possibility of a
reliable collision detection. The results of the presented works show that a collision detection is
reasonable to reduce injury risk. For this purpose the used fault detection and isolation scheme
using a disturbance observer is introduced. As result of a previous work (see [3]) an active
collision reaction strategy is shown:

qd = qcol +

∫

KRr , q̇d = KRr ,

that moves the robot arm out of the collision, according to the observed collision forces. If the
collision force disappears the arm holds its current position. This reduces the likelihood for a
second collision.

The residual which differs from zero only when a collision occurs is based on the generalized
momentum

p = M(q)q̇ .

The determined joint torque τel caused by an external force depends only on the elastic trans-
mission torque, as well as the joint position and velocity. Thus, no joint acceleration has to
be computed which is not a trivial task. Additionally, the observed joint torques are low pass
filtered to reduce the influence of noise which results in the residual

r = K I

�

p(t)−
∫ t

0

�

τel +C
�

q , q̇
�T q̇ − g

�

q
�

− F
�

q , q̇
�

q̇ + r
�

�

d t − p(0).

Each entry of the constructed residual has the property of only differing from zero when the
corresponding joint is involved in the collision. Thus, it is possible not only to identify a collision
but also to isolate where the collision takes place.

After the introduction of the residual, its implementation in the BioRobApp is evaluated by
execution of a collision. Since calculating the joint velocities using backward difference results
in a highly disturbed residual an alternative approach is presented. This approach tries to
approximate the joint position derivative by calculating the slope at the actual time step with a
weighted linear regression. This regression uses the time information of previous joint positions
to exponentially reduce their influence into the equation system. The resulting residual is nearly
free of noise and can be used for collision detection.

To test the collision detection with the BioRobApp simulation model, an obstacle with an
appropriate contact model is introduced. The collision test shows that the robot arm moves out
of the collision as intended. In a next step the real collision characteristics, including the acting
forces and their time response, has to be evaluated with the real robot. Since the collision test
in the application has been successful, the program can be directly used for a test with the real
robot. With such a real collision test, one is able to evaluate how the collision detection is able
to reduce collision forces whether it is fast enough and which injury risks can be assumed for
the BioRob-Arm.
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6 Conclusion and Further Work

This work considered the important role of robots and humans that cooperate together to fulfill
tasks. The role of physical human-robot interaction increases since robots are suited to help hu-
mans with routine work or collaborate with each other during production. Small and medium
enterprises represent an example where safe physical human-robot interaction can be used to
increase their cost efficiency. To evaluate safety some metrics are shortly introduced. Subject of
research in this thesis is the human inspired BioRob-Arm. After investigation of safety require-
ments e.g. the ISO 10218 and collision tests, the acting collision torques have been described.
Besides some design choices a reliable collision detection is able to reduce the injury risk for
people working with robots. Since the most collision detection schemes need additional sen-
sors, which are not applicable for die BioRob-Arm, it is advisable to use a fault detection and
isolation scheme with a model-based observer. The used observer does not need joint accelera-
tion and further low pass filters the residual to reduce the influence of noise. Before using such
a scheme a model has to be created and then the parameters have to be identified.

To build the model of a robot with elastic joints two assumptions are made. These assumptions
facilitate the model. Based on the Denavit-Hartenberg convention the kinematic model of the
BioRob-Arm is described. To create the actuator side model, all parts are modeled separately
and than combined to the actuator drive train. The rigid dynamics model has been calculated
using the Newton-Euler recursion. Since the robot arm has to be controlled the controller is
shortly introduced using a simplified inverse dynamics to calculate the motor position from the
joint position. Now the whole model of an elastic joint robot arm is described and can be used
for collision detection.

The model parameter estimation is done by using two approaches. On actuator side the
linear least squares estimation is realized by creating the regressor matrix only by rearranging
the different types of parameters. For load side a modified Newton-Euler approach is used to
create a dynamics model, which only depends linearly on the model parameters. After model
reduction (elimination of linear dependent columns of the regressor matrix) this model is used
similar to the actuator side, to estimate the parameters. The least squares estimation is done
by a dynamic estimation scheme, which tries to estimate all parameters with the data recorded
from a trajectory. Since not all trajectories produce good results of the least squares estimation,
these are optimized according to a observability measure. The carried out optimizations and
parameter estimations showed that the D-optimality observability measure in combination with
trajectories based on Fourier-Series are working well for the BioRob-Arm. The created models
have been evaluated using the disturbance observer, which is used for collision detection. The
resulting models are not accurate enough to use them for collision detection, so they have to be
refined repeating the identification iteration.

As collision detection, a disturbance observer based on the generalized momentum has been
implemented into the BioRobApp. The described residual is calculated only by the elastic trans-
mission torque, joint position and velocity. To be more robust against noise the estimated exter-
nal joint torque is low pass filtered. Since numerical differentiation of the joint positions causes
high distortion in the residual, an alternative approach using weighted least squares has been
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presented to calculate the joint velocities. A first collision test between the robot’s end-effector
and an obstacle has been successfully carried out in simulation. The used reaction strategy
moved the robot arm out of the collision area by using the residual information.

The proposed model identification framework is suitable to produce good parameter estima-
tion results, as seen in the evaluation by simulation. The experimental estimated model is not
accurate enough to be used for reliable collision detection. This leads to the work that needs
to be done. Since the used model for trajectory optimization does not match the real one, the
produces trajectories are not optimal for identification. Thus, more estimation iterations has to
be carried out till the model converges. A faster way to directly create optimal trajectories is to
use an on-line optimization scheme. Actual the ROS (Robot Operation System) connection is
under construction. This provides an interface to directly send trajectories to the robot. After
the trajectories have been performed on the robot, the results can be directly evaluated. Another
accuracy limit is set by the model precision. Up to now only a simple friction model is used,
linear spring characteristics and also no backlash are assumed. To increase the identification
results this model parts should be refined. Another problem for identification is determined by
the lightweight design. Even at very high velocities only a little range of the elastic transmis-
sion characteristic is observed. Furthermore the friction parameters can significantly change
when the robot has grabbed a workpiece. So the loaded state has to be considered during the
estimation process.

If a model with a certain accuracy has been determined, the collision test should be carried out
on the real robot. For example with a force plate the acting collision forces and the joint torque
characteristics can be evaluated with high accuracy. Only with this information it is possible to
evaluate the benefit of the implemented collision detection. Further, the real injury risk arising
by the BioRob-Arm can be investigated.
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Symbols

A Trajectory coefficient matrix for P time instances
αc(q) [rad] Correction vector of the motor position to receive the equilibrium

position
B Matrix of unknown system parameter vectors for each regressor

entry
BE Matrix B in Echelon from
BEu Non zero rows of BE

C(q , q̇) Matrix of the centrifugal and Coriolis forces
d [Nm s

rad
] Vector of the joints viscous damping coefficients

de [Nm s
rad
] Vector of spring damping coefficients

dv,m [Nm s
rad
] Reflected viscous damping coefficient of the motor and gearbox

Dv,m [Nm s
rad
] Diagonal matrix of the reflected viscous damping coefficient

dC ,m [Nm s
rad
] Reflected Coulomb friction coefficient of the motor and gearbox

DC ,m [Nm s
rad
] Diagonal matrix of the reflected Coulomb friction coefficient

D i
i+1

Pseudo-rotation matrix between link i and i+ 1
δi Trajectory parameter vector for joint i
δq [rad] Virtual displacement of the joints
δX [rad] Virtual displacement of the end-effector
εAV Relative error of the estimated parameters
εMAX Maximum relative error of the estimated parameters
εRMS Root mean square difference between measured and estimated

joint torques
fi [kg] Force exerted on link i by link i− 1
Fi [kg] Net force exerted on link i
g (q) Gravity torque vector
γi [kg, Nm] Vector that combines the force and torque exerted on link i by link

i− 1
Γi [kg, Nm] Vector that combines the net force and torque exerted on link i
ia [A] Vector of the motors armature current
i′a [A] Vector of the motors armature current calculated with the actual

motor voltage without influence of friction
I [kg m2] Link inertia tensor
I ci
i [kg m2] Inertia tensor of link i expressed about the center of mass of link

i
I ′i [kg m2] Inertia tensor of link i expressed about the links coordinate frame
Ig [kg m2] Vector of the gearbox’ inertias with respect to the motor axis
Ir [kg m2] Vector of the motors rotor inertia
J(q) The robot’s Jacobian matrix
K [ Nm

rad
] Diagonal spring stiffness matrix
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K i The matrix that describes the kinematic structure of link i
K I Diagonal time constant matrix of the residual
ke [ Nm

rad
] Vector of spring stiffness coefficients

KR Diagonal gain matrix for the collision reaction strategy
kt

Nm
A

The motors torque constant vector
kv

Vs
rad

The motors speed constant vector
l [m] Vector of the links lengths
L [Nm] Angular momentum of a rigid body (e.g. the rotor)
mi [kg] Total mass of link i
M(q) Mass matrix
ng Vector of gearbox ratios
ni [Nm] Torque exerted on link i by link i− 1
Ni [Nm] Net torque exerted on link i
np Vector of elastic transmission ratios
ωi [ rad

s
] Angular velocity of the i-th coordinate frame Si

ω̇i [ rad
s2 ] Angular acceleration of the i-th coordinate frame Si

p Generalized momentum
P Number of measurements used for parameter identification
φ Coefficient matrix of the linear dynamic model
φt ot Stacked coefficient matrix for P measurements
q [rad] Vector of joint positions
q̄i(k) [rad] Mean joint position over S periods at time instance k of joint i
q̇ [ rad

s
] Vector of joint velocities

q̈ [ rad
s2 ] Vector of joint accelerations

r [Nm] Residual vector
r i

ci
Vector that determines the center of mass position relative to the
i-th link frame Si

Ri−1
i Orthogonal rotation matrix, which transforms a vector in the i-th

coordinate frame to a coordinate frame, which is parallel to the
(i− 1)-th coordinate frame, for i = 1,2, . . . , n, where Rn

n+1 = I
Si Coordinate frame of link i
Σ−1 Diagonal matrix containing the reciprocal of the measured torque

variances
σ2

qi
[rad2] Variance of the joint positions for S periods at joint i

σ2
τi

[Nm2] Variance of the joint torques for S periods at joint i
Ti [s] Time constant of the low pass filter for joint i
τ [Nm] Vector of joint torques
τt ot [Nm] Stacked joint torques for P measurements
τi [Nm] Joint torque at joint i
τ̂ [Nm] Vector of joint torques, which are estimated using the robot dy-

namics model
τ̄i(k) [Nm] Mean joint torque over S periods at time instance k of joint i
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τel [Nm] Vector of the elastic transmission torques
τex t [Nm] Vector of torques caused by an external force
τm [Nm] Vector of motor torques
τr [Nm] The motors rotor torque
θ [rad] Vector of motor positions
θ̇ [ rad

s
] Vector of motor velocities

θ̈ [ rad
s2 ] Vector of motor accelerations

ϑ Dynamic parameter vector
u [V ] Vector of the motors voltage
vi [m

s
] Linear velocity of the i-th coordinate frame Si

v̇i [m
s2 ] Linear acceleration of the i-th coordinate frame Si

vci
[m

s
] Linear velocity of center of mass of link i

v̇ci
[m

s2 ] Linear acceleration of center of mass of link i
x [m] Penetration depth of the end-effector into the collided obstacle
ẋ [m

s
] Collision velocity at the end-effector

z The allover transmission ratio of the drive train (z = ng · np)
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A Additional Information Regarding Parameter Identification

The tables A.1, A.2 and A.3 show the optimization results of the simulation model with different
optimization algorithms, trajectory functions and varying function degree.

Frouries-Series Polynom
Degree 3 Degree 3

IP TRR SQP IP TRR SQP
# interation 2 42 1 3 17 1
# func. eval. 101 1772 82 89 725 70
obj. function 22.27 24.42 25.05 20.84 14.33 21.51
εAV 7.95 29.82 61.71 45.04 55.67 64.41
εMAX 77.54 252.00 720.59 33.37 287.58 408.37
εRMS Joint 1 1.53·10−1 1.54·10−1 1.48·10−1 3.04·10−1 1.77·10−1 1.98·10−1

εRMS Joint 2 1.49·10−1 1.38·10−1 1.75·10−1 9.36·10−1 1.95·10−1 1.85·10−1

εRMS Joint 3 5.23·10−2 6.64·10−2 5.24·10−2 5.20·10−2 6.32·10−2 7.73·10−2

εRMS Joint 4 1.11·10−1 1.10·10−1 1.09·10−1 1.01·10−1 1.03·10−1 1.00·10−1

Table A.1: Trajectory optimization results for actuator side with function of degree three

Frouries-Series Polynom
Degree 4 Degree 4

IP TRR SQP IP TRR SQP
# interation 10 57 2 3 33 2
# func. eval. 444 2833 178 132 1309 140
obj. function 25.40 26.36 30.08 24.94 24.89 21.12
εAV 25.09 9.82 11.38 56.51 54.99 29.74
εMAX 221.53 127.02 86.55 522.75 659.33 152.31
εRMS Joint 1 1.46·10−2 3.03·10−1 1.52·10−1 2.01·10−1 1.63·10−1 1.47·10−1

εRMS Joint 2 1.47·10−2 1.40·10−1 1.50·10−1 1.94·10−1 1.87·10−1 1.38·10−1

εRMS Joint 3 5.23·10−2 5.31·10−2 5.51·10−2 5.25·10−2 5.31·10−2 8.12·10−2

εRMS Joint 4 1.11·10−2 1.11·10−1 1.12·10−1 1.04·10−1 1.03·10−1 1.01·10−1

Table A.2: Trajectory optimization results for actuator side with function of degree four
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Frouries-Series Polynom
Degree 5 Degree 5

IP TRR SQP IP TRR SQP
# interation 8 42 2 5 25 2
# func. eval. 468 2457 194 206 1347 151
obj. function 33.32 33.30 37.09 28.77 24.61 29.87
εAV 3.56 97.35 87.55 90.75 28.46 97.08
εMAX 22.25 128.35 109.27 101.09 277.57 1165.61
εRMS Joint 1 1.15·10−1 1.44·10−1 1.50·10−1 2.39·10−1 1.04·10−1 1.81·10−1

εRMS Joint 2 1.42·10−1 1.39·10−1 1.49·10−1 1.67·10−1 9.36·10−1 1.57·10−1

εRMS Joint 3 5.27·10−2 6.08·10−2 5.50·10−2 5.70·10−2 5.20·10−2 9.90·10−2

εRMS Joint 4 1.12·10−2 1.09·10−2 1.14·10−1 1.06·10−1 2.36·10−1 1.08·10−1

Table A.3: Trajectory optimization results for actuator side with function of degree five

The plots in figure A.1 and A.2 show the best and worst torque estimation from the determined
actuator model parameters in case of the evaluation and excitation trajectory.
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(a) Best motor torque estimation for evalua-
tion trajectory
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(b) Worst motor torque estimation for evalua-
tion trajectory

Figure A.1: Motor torques calculated from the estimated actuator parameters in case of the eval-
uation trajectory
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(a) Best motor torque estimation for excita-
tion trajectory
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(b) Worst motor torque estimation for excita-
tion trajectory

Figure A.2: Motor torques calculated from the estimated actuator parameters in case of the exci-
tation trajectory

After the actuator side, the load side parameters are estimated. To show the estimation quality,
the best and worst elastic transmission torque is depicted in figure A.3.
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(a) Best elastic transmission torque estima-
tion for evaluation trajectory
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(b) Worst elastic transmission torque estima-
tion for evaluation trajectory

Figure A.3: Elastic transmission torques calculated from the estimated load parameters in case
of the evaluation trajectory
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