Fachgebiet Simulation, Systemoptimierung und Robotik Fachbereich Informatik Technische Universität Darmstadt

Drehraten- und Translationsbestimmung aus monokularen Bildfolgen

Determination of translation and rotation from sequences of monocular images

Diplomarbeit

von Gerhard Rohe

Darmstadt, Mai 2008

Aufgabenstellung: Prof. Dr. Oskar von Stryk Betreuer: Dipl.-Inform. Martin Friedmann

Erklärung zur Diplomarbeit

Hiermit versichere ich, dass die vorliegende Diplomarbeit ohne Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt wurde. Alle Stellen, die aus den Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, Mai 2008

Gerhard Rohe

Zusammenfassung

Damit mobile Robotersystemen selbstständig Aufgaben bewältigen können ist das Wissen über deren Orientierung und Position unumgänglich. Diese Selbstlokalisation ist Voraussetzung für ein autonomes Handeln.

Die Aufgabenstellung dieser Diplomarbeit besteht darin, aus monokularen Bilddaten die Translation und Drehrate zu bestimmen. Dabei soll im Besonderen die Epipolargeometrie genutzt werden, d.h. aus der Verbindung zweier Bilder wird die relative Orientierung abgeleitet. Im Zuge der Realisierung der Diplomarbeit wird die Aufgabe in die Prozesskette "Punktkorrespondenzen bestimmen", "robuste Schätzungen" und "Erzeugung der Fundamentalmatrix" zerlegt, wobei für jede dieser Teilaufgaben verschiedene Algorithmen zum Einsatz kommen können. Eine modulare Realisierung der Algorithmen mit definierten Schnittstellen ermöglichte die Untersuchung und Bewertung verschiedener Kombinationen von Algorithmen. Zur Evaluierung der umgesetzten Algorithmen werden sowohl synthetische Daten als auch reale Bildfolgen herangezogen. Bei der Erprobung der verschiendenen Verfahren hat sich gezeigt, dass die berechneten Translationen ungenau sind. Die Rotation wird mit einer Genauigkeit +/- 2 Grad (mittlerer Fehler) errechnet.

Abstract

The Knowledge of the orientation and position of mobile robot systems is essential independent handling of tasks. This self-localization is prerequisite for an autonomous behavior.

The topic of this thesis consists of determining the relative translation and rotation from sequences of monocular images. In particular the Epipolargeometry should be used, i.e. the relative orientation shall be derived from the relation of two images. During the realization of this thesis it was determined to split the task into the process chain point correspondences, robust estimation and calculation of the fundamental matrix, in which for each of these partial tasks different algorithms can be used. A modular realization of the algorithms with defined interfaces enabled the examination and assessment of different combinations of algorithms. For the evaluation of the implemented algorithms synthetic data and sequences of real images were used. During testing of the different methods it has become obvious that the calculated translation are inaccurate. The rotation was calculates with a precision of +/-2 degrees (median error).

Inhaltsverzeichnis

1	Einf	führung 1
	1.1	Einleitung
	1.2	Zielsetzung
	1.3	Aufbau der Arbeit
2	Star	nd der Forschung 5
3	Gru	indlagen 7
	3.1	Analytische Geometrie in der Ebene
	3.2	Homogene Darstellung und Projektiver Raum 7
	3.3	Kameramodell
	3.4	Rückprojektion
4	Zwe	ei-Bild-Geometrie 15
	4.1	Fundamentalmatrix
	4.2	Berechnung der Fundamentalmatrix
		4.2.1 8-Punkte-Algorithmus
		4.2.2 7-Punkte-Algorithmus
	4.3	Essentielle Matrix
	4.4	3D-Rekonstruktion
	4.5	Kostenfunktionen
		4.5.1 Algebraische Distanz
		4.5.2 Geometrische Distanz
		4.5.3 Sampson-Fehler
	4.6	Robuste Schätzungen
		4.6.1 Random Sample Consensus
		4.6.2 Least Median of Squares
5	Mer	rkmalsextraktionsverfahren 31
	5.1	SIFT Merkmalerkennung
		5.1.1 Merkmalsuche $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$

INHALTSVERZEICHNIS

5.2	5.1.2Merkmalsbeschreibung	35 37 37 39	
Kon	lzept	41	
6.1	Korrespondenzbildung	41	
6.2	Berechnung der Orientierung	42	
	6.2.1 Robuste Schätzung	42	
	6.2.2 Optimierung	44	
	6.2.3 Faktorisierung	44	
6.3	Bewertung	45	
Soft	ware	47	
7.1	Verwendete Bibliotheken	47	
7.2	Implementierung des Konzeptes	48	
Experimentelle Erprobung			
8.1	Verwendete Hardware	53	
8.2	Merkmalserkennung mit SIFT und SURF	54	
	8.2.1 Laufzeit der Merkmalsextraktion	54	
	8.2.2 Laufzeit der Korrespondenzsuche	55	
8.3	Orientierungsbestimmung aus synthetischen Daten	55	
	8.3.1 Ideale Merkmale	56	
	8.3.2 Simulation einer optimalen Kamera	57	
	8.3.3 Simulierte optimale Kamera mit Optimierung	59	
8.4	Untersuchung der Verfahren mit realen Bilddaten	60	
	8.4.1 Versuchsbeschreibung	60	
	8.4.2 Ergebnisse	61	
	8.4.3 Analyse \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	62	
8.5	Fazit	64	
Zusa	ammenfassung und Ausblick	65	
Literaturverzeichnis			
Rea	le Bilddaten und deren Aufnahmeparameter	73	
	5.2 Kon 6.1 6.2 6.3 Soft 7.1 7.2 Exp 8.1 8.2 8.3 8.4 8.5 Zusz zerat	5.1.2 Merkmalsbeschreibung 5.2 SURF-Merkmale 5.2.1 Merkmalsuche 5.2.2 Merkmalsbeschreibung Konzept 6.1 Korrespondenzbildung 6.2 Berechnung der Orientierung 6.2 6.2 Berechnung der Orientierung 6.2.1 Robuste Schätzung 6.2.2 Optimierung 6.2.3 Faktorisierung 6.3 Bewertung 6.3 Bewertung 6.3 Bewertung 6.3 Bewertung 6.3 Bewertung 7.1 Verwendete Bibliotheken 7.2 Implementierung des Konzeptes 8.1 Verwendete Hardware 8.2 Inafzeit der Merkmalsextraktion 8.2.1 Laufzeit der Korrespondenzsuche 8.3 Orientierungsbestimmung aus synthetischen Daten 8.3.1 Ideale Merkmale 8.3.2 Simulation einer optimalen Kamera 8.3.3 Simulation einer optimalen Kamera 8.4.1 Versuchsbeschreibung 8.4.2 Ergebnisse 8.4.3	

ii

Kapitel 1 Einführung

Um einen Überblick über die im Nachfolgenden dargestellt Diplomarbeit zu erhalten, wird im Kapitel Einführung im Absatz Einleitung die Problemstellung und die Vorgehensweise präsentiert. Im darauf folgendem Absatz wird die Zielsetzung beschrieben und im Absatz Aufbau der Arbeit ein Überblick über die in der Ausarbeitung dargestellten Kapitel gewährt.

1.1 Einleitung

Die selbstständige Bestimmung der Orientierung ist ein unersetzlicher Teil mobiler autonomer Robotersysteme. Ohne zu wissen, wo der Roboter sich befindet und wie er ausgerichtet ist, kann er keinen Plan erstellen, um von der gegebenen Position zu einem bestimmten Punkt zu navigieren. Bestimmte Aktionen sind erst sinnvoll oder möglich, wenn die eigene Position und Richtung bekannt ist. Ein Roboterspieler, wie z.B. im Robocup, kann zwar schnell am Ball sein, wenn er aber nicht weiß wo er sich auf dem Spielfeld befindet, kann er den Ball nicht in Richtung Tor schießen.

Es gibt verschiedene Methoden, um die eigene Position zu bestimmen. Varianten mit Hilfsmitteln, wie z.B. GPS oder Infrarotbarken haben den Nachteil, dass sie von einem anderen System abhängig sind und man sich in dessen Reichweite befinden muss. Verlässt man diesen Bereich, gibt es keine Möglichkeit, die eigene Position zu bestimmen. Die Methoden ohne externe Unterstützung sind auf keine Hilfsmittel angewiesen. Dazu gehört die schon Jahrzehnte alte Methode eigene Odometriedaten auszuwerten. Diese haben den Nachteil, dass aufgrund ungenauer Sensordaten der Positionsfehler mit steigendem zurückgelegten Weg ebenfalls stark ansteigt. Fliegende Robotersysteme können diese Methode auf keinen Fall verwenden, da sie keinen Bodenkontakt haben. In der Luftfahrt werden Inertialsensoren wie Gyroskop und Beschleunigungssensoren benutzt. Zum einen sind diese Sensoren sehr teuer und zum anderen sind sie zeitabhängig. Das heißt, der Fehler wird immer größer, je länger man die Position bestimmen will.

Der Mensch geht hierbei einen ganz anderen Weg und ist dabei weder von der Zeit noch von der zurückgelegten Strecke abhängig. Der Großteil der menschlichen Orientierung erfolgt über seine Augen, das heißt über die visuelle Erfassung. Aus diesem Grund liegt es nahe, ein System zu entwickeln, dass sich ohne fremde Unterstützung und allein mit Hilfe von Kameradaten orientieren kann. In dieser Arbeit wird genau diese Vorgehensweise genutzt indem mit Hilfe der Epipolargeometrie eine Verbindung zwischen Kameradaten hergestellt wird. Diese Verbindung wird durch die Fundamentalmatrix mathematisch beschrieben.

Als Vorbereitung für die programmtechnische Realisierung der Epipolargeometrie werden die theoretischen Anforderungen erarbeitet. Die theoretischen Grundlagen sind in der vorliegenden Diplomarbeit detailliert dargestellt. Bis auf die Algorithmen zur Merkmalsextraktion (siehe Kapitel 7.1) wurden alle anderen Algorithmen innerhalb der Diplomarbeit als eigenständige und wiederverwertbare Module, basierend auf RoboFrame [6] realisiert. Der dokumentierte Quellcode wird im Zuge der Diplomarbeit an den Fachbereich übergeben.

In Folge der Auseinandersetzung mit der Aufgabenstellung wurde offensichtlich, die Gesamtaufgabe in verschiedenen Teilaufgaben zu realisieren ist. Diese sind im Folgenden detailliert beschrieben. Durch den modularen Aufbau der Algorithmen mit eigens definierten Schnittstellen ist eine flexible Nutzung dieser Algorithmen bei den 8 verschiedenen Verfahren ermöglicht. Unter Verfahren wird eine Kette von Algorithmen verstanden.

Im letzten Teil dieser Arbeit werden die Ergebnisse der verschiedenen Verfahren anhand umfangreicher, experimenteller Erprobung mit synthetischen und realen Bilddaten analysiert und evaluiert.

1.2 Zielsetzung

Ziel dieser Diplomarbeit ist es zu untersuchen, inwieweit die Epipolargeometrie genutzt werden kann, um aus realen Bilddaten die relative Kameraorientierung (und damit die relative Orientierung eines mit der Kamera

1.3. AUFBAU DER ARBEIT

verbundenen Robotersystems) zu berechnen. Hierzu gilt es, verschiedene Verfahren zur Berechnung der Fundamentalmatrix miteinander zu vergleichen und zu bewerten. Weiterhin sollen die Methoden Scale-Invariant-Feature-Transform (SIFT) und Speeded-Up-Robust-Feature (SURF) auf Verwendbarkeit zur Korrespondenzbestimmung untersucht werden.

Um diese Aufgabe zu lösen soll eine Umgebung implementiert werden, die durch ihre modulare Struktur ein hohes Maß an Flexibilität und Wiederverwendbarkeit gewährleistet. Im Rahmen dieser Umgebung sollen verschiedene Experimente aus synthetischen und realen Daten durchgeführt und analysiert werden, um die verschiedenen Verfahren zu bewerten.

1.3 Aufbau der Arbeit

In Kapitel 2 wird der Bezug zu bereits existierenden Forschungsergebnissen hergestellt und es werden Unterschiede zu dieser Arbeit aufgezeigt. Kapitel 3 beschäftigt sich mit den Grundlagen, die nötig sind, um die verwendeten Algorithmen zu verstehen. Die Erläuterungen beginnen bei der Theorie über den Projektiven Raum und gehen über zum allgemeinen Kameramodell.

Mit Hilfe der im Theorieteil hergeleiteten Beziehungen werden in Kapitel 4.1 die verwendeten Verfahren zur Orientierungsbestimmung aus Korrespondenzdaten dargestellt. Hierbei wird genauer auf die Verfahren 7-Punkte-Algorithmus und 8-Punkte-Algorithmus zur Fundamentalmatrixerzeugung eingegangen. Im Anschluss werden die Methoden Random-Sample-Consensus (RANSAC) und Least-Median-of-Squares (LMedS) vorgestellt, die robuste Schätzungen aus ausreißerbehafteten Korrespondenzmengen ermöglichen. Danach wird auf Verfahren zur Optimierung der Fundamentalmatrix aus verrauschten Daten eingegangen.

Das Kapitel 5 beschäftigt sich mit den Merkmalsextraktionsverfahren SIFT und SURF und geht dabei näher auf die Lokalisierung der Merkmale und die daraus resultierende Korrespondenzbestimmung ein.

In Kapitel 6 wird das Konzept vorgestellt, welches der im Rahmen dieser Arbeit durchgeführten Implementierung zu Grunde liegt. Ausgehend vom Gesamtproblem werden Teilaufgaben definiert, die durch unterschiedliche Verfahren gelöst werden können.

Kapitel 7 stellt Einzelheiten zur Implementierung dar. Die verwendeten externen Bibliotheken werden erläutert und es wird auf die Umsetzung des

vorgestellten Konzepts eingegangen.

Die umgesetzten Verfahren werden in Kapitel 8 anhand von Experimenten zur Thematik "Genauigkeit und Stabilität" unter Fehlereinflüssen analysiert. Dabei werden erst synthetische Daten ohne Rauschen verwendet, um die grundlegende Funktionalität der Implementierung zu testen. Danach wird untersucht, welche Genauigkeit mit einer optimalen Kamera mit einer Auflösung von $640 \cdot 480$ Pixeln erreicht werden kann. Am Ende der Testreihe steht ein Experiment bestehend aus 400 Bildvergleichen mit realen Bilddaten. Anhand dieser Ergebnisse werden Stärken und Schwächen der verwendeten Methoden genannt und bewertet.

Kapitel 2

Stand der Forschung

Es gibt eine Vielzahl von Möglichkeiten, wie sich Robotersysteme orientieren können. Verfahren wie GPS, GALILEO oder sonstige Verfahren mit künstlichen Baken haben den Nachteil, dass die Orientierung nur durchgeführt werden kann, wenn man sich innerhalb der Reichweite des Systems befindet. Durch diese Eigenschaft ist die Verwendungsmöglichkeit stark eingeschränkt.

Wünschenswert sind deshalb Verfahren, die ohne Hilfsmittel auskommen. Die Messung der Odometriedaten ist einfach und liefert auf kurzen Strecken gute Ergebnisse. Der Nachteil dieser Methode ist jedoch, dass bei steigender zurückgelegter Wegstrecke, eine genaue Berechnung der Orientierung immer schwieriger wird, da zusätzliche Fehlerquellen wie z.B. Schlupf der Räder berücksichtigt werden müssen. In [22] wurden die Odometriedaten genutzt, um die Position und Fahrtrichtung eines radgetriebenen Roboters zu bestimmen.

Einfache Abstandssensoren, wie Ultraschallsensoren oder Laserscanner liefern gleichbleibend gute Ergebnisse, können die eigene Lage nur bezüglich anderer Objekte darstellen.

Inertialsensoren, wie Gyroskope oder Beschleunigungssensoren werden mit Erfolg zur Lösung des Problems eingesetzt. Die Schwachstelle hierbei ist, dass die Ergebnisse mit steigender Beobachtungszeit immer ungenauer werden. Sensorsysteme, wie sie beispielsweise in Flugzeugen eingesetzt werden kosten über 100.000 Euro. Kostengünstige Varianten weisen bereits nach wenigen Minuten Abweichungen von mehreren Grad auf. In [18] werden Inertialsensoren zum Erstellen einer Karte benutzt. Durch die genannte Abweichung ist der Einsatz der Systeme nur für eine bestimmte Zeit möglich und muss nach definierten Zeitintervallen neu kalibriert werden.

Der Mensch nimmt den Großteil seiner Wahrnehmung über die Augen auf. Angelehnt an dieses Beispiel werden hier visuelle Verfahren zur Lösung des Problems vorgestellt. Die Orientierung erfolgt durch Auswertung der Unterschiede von Bild zu Bild. Hierbei werden die Abbildungen von Objekten gesucht, um damit Rückschlüsse auf die relative Orientierung der Kamera zu erlangen. Das Problem spaltet sich in zwei Teilaufgaben, das "Auffinden von Objekten" und "die Berechnung der Orientierung" aus diesen Bilddaten. Durch die aktuelle, umfassende Forschung im Bereich der Bildverarbeitung und im Besondern zur Bestimmung von identifizierbaren Bildmerkmalen gibt es eine Vielzahl von Algorithmen, wie SURF [13], SIFT [3], Harris-Cornerdetection [19] oder Optical-Flow[21]die für die gewünschten Aufgaben einzeln bewertet werden müssen.

Um die Orientierung aus Bilddaten zu berechnen wird in [1], [4] die Trifokalgeometrie benutzt. Hierbei handelt es sich um die Idee, die Szene aus drei unterschiedlichen Kamerarichtungen zu betrachten. Der Vorteil von drei Kameras ist, dass die Abbildung aus zwei Kameras in die dritte transformiert werden kann, das heißt, dass die Abbildung eines Objektes im dritten Bild durch die Abbildung in den anderen Kameras bestimmt ist. Durch diese Eigenschaft kann anhand von Punktkorrespondenzen die relative Orientierung der Kameras berechnet werden. Hierbei müssen jedoch korrespondierende Punkte in allen drei Bildern gefunden werden. In [4] wurde hierfür der SIFT-Algorithmus [3] verwendet. Dies führt dazu, dass ein erheblicher Rechenaufwand nötig ist. Alternativ dazu können zwei der drei Abbildungen konstant gewählt werden und nur die dritte Kamerarichtung relativ zu den anderen beiden berechnet werden. Vorteil ist, dass die Orientierung der zwei konstanten Kameras nicht immer wieder berechnet werden muss. Dies hat jedoch den Nachteil, dass die Orientierung nur im Sichtfeld der anderen Abbildung möglich ist. In [1] wird sogar ein Verfahren beschrieben, dass die Orientierung aus n-Bildern berechnet, jedoch gilt die beschriebene Einschränkung dann ebenfalls für das Sichtfeld der n-Kameras.

In dieser Arbeit wird die Berechnung der Orientierung mit nur einer monokularen Kamera vorgenommen und die eigene Drehrate und Translation wird aus einzelnen Bildfolgen berechnet. Diese Lösung ist gegenüber dem oben genannten Verfahren weniger genau, kompensiert dies aber durch bedeutend geringere Rechenanforderungen und eröffnet einen größeren Aktionsbereich

Kapitel 3

Grundlagen

3.1 Analytische Geometrie in der Ebene

Die Ebene bezeichnet in der analytischen Geometrie einen 2-dimensionalen Vektorraum über dem Körper \mathbb{R}^2 . Punkte symbolisieren Vektoren dieses Raumes. Durch eine Basis wird ein Koordinatensystem festgelegt. Die Koordinaten $(x \ y)^T$ eines Punktes bezeichnen die Komponenten des Vektors bezüglich dieser Basis. Als Gerade wird der 1-dimensionale affine Unterraum g bezeichnet, dessen Elemente $(x \ y)^T$ folgende Gleichung erfüllen

$$ax + by + c = 0 \quad , mit \ a, \ b, \ c \in \mathbb{R}.$$

$$(3.1)$$

3.2 Homogene Darstellung und Projektiver Raum

Aus Gleichung 3.1 ist zu erkennen, dass jede Gerade durch ihre Parameter als 3-dimensionaler Vektor $(a \ b \ c)^T$ betrachtet werden kann. Diese Darstellung ist nicht eindeutig, denn alle Punkte, die diese Gleichung erfüllen, gehen auch mit Gleichung kax + kbx + kc = 0 für $k \neq 0$ konform. Die Vektoren, die über eine Skalierung ineinander überführbar sind, werden als äquivalent angesehen und in einer Äquivalenzklasse zusammengefasst. Eine Klasse mit dieser Beziehung wird homogener Vektor genannt. Jeder von **0** verschiedene Vektor kann genau zu einer Klasse zugeteilt werden. Die Menge aller Klassen in $\mathbb{R}^3 - (0 \ 0 \ 0)^T$ bildet den Projektiven Raum \mathbb{P}^2 . Der Vektor $(0 \ 0 \ 0)^T$ gehört nicht zu diesem Raum.

Ein Punkt $(x \ y)^T$ liegt auf der Geraden $\mathbf{l} = (a \ b \ c)^T$, wenn Gleichung

3.1 erfüllt ist. Diese Beziehung kann auch als Skalarprodukt $(x \ y \ 1)(a \ b \ c)^T$ = $(x \ y \ 1) \ \mathbf{l} = 0$ ausgedrückt werden. Indem die 3. Koordinate auf 1 gesetzt wird, kann somit der Punkt $(x \ y)^T \in \mathbb{R}^2$ als 3-dimensionaler Vektor dargestellt werden. Für den Fall, dass Gleichung 3.1 erfüllt ist, ist auch $(kx \ ky \ k)\mathbf{l} = 0$ für k ungleich 0. Deshalb liegt die Annahme nahe, dass alle Vektoren $(kx \ ky \ k)$ denselben Punkt $(x \ y)^T$ in \mathbb{R}^2 repräsentieren. Punkte können ebenfalls durch homogene Vektoren dargestellt werden. Punkte der Form $(x \ y \ z)^T$ repräsentieren den Punkt $(x/z \ y/z)^T$ in \mathbb{R}^2 . Punkte sind also auch Elemente von \mathbb{P}^2 . Ein Vektor aus \mathbb{P}^2 symbolisiert sowohl einen Punkt als auch eine Gerade in \mathbb{R}^2 .

Durch die Schreibweise der Gleichung 3.1 als Skalarprodukt ist ersichtlich, dass ein Punkt \mathbf{x} genau dann auf der Geraden l liegt, wenn

$$\mathbf{x}^T \mathbf{l} = 0 \tag{3.2}$$

erfüllt ist. Die Koordinaten von \mathbf{x} und \mathbf{l} werden hierbei in homogener Schreibweise angegeben.

Schnittpunkt zweier Geraden Im Folgenden soll der Schnittpunkt zweier Geraden $\mathbf{l} = (a \ b \ c)^T$ und $\mathbf{l}' = (a' \ b' \ c')^T$, gesucht werden. Aus der analytischen Geometrie ist bekannt, dass gilt $\mathbf{l}(\mathbf{l} \times \mathbf{l}') = \mathbf{l}'(\mathbf{l} \times \mathbf{l}') = 0$, wobei × das Kreuzprodukt beschreibt. Im Folgenden sei nun \mathbf{x} definiert durch $\mathbf{x} = \mathbf{l} \times \mathbf{l}'$. Zu sehen ist, dass $\mathbf{l}^T \mathbf{x} = \mathbf{l}'^T \mathbf{x} = 0$. Wird der Punkt \mathbf{x} als homogener Vektor betrachtet, liegt \mathbf{x} auf beiden Geraden \mathbf{l} und \mathbf{l}' . Folglich ist \mathbf{x} der Schnittpunkt durch die Gleichung

$$\mathbf{x} = \mathbf{l} \times \mathbf{l}' \tag{3.3}$$

gegeben. Analog kann die Gerade durch zwei Punkte \mathbf{x} und \mathbf{x} ' durch folgende Gleichung berechnet werden:

$$\mathbf{l} = \mathbf{x} \times \mathbf{x}' \tag{3.4}$$

Ideale Punkte und Punkte im Unendlichen Betrachtet man zwei parallele Geraden $\mathbf{l} = ax + by + c$ und $\mathbf{l}' = ax + by + c'$, so ergeben sich die homogenen Repräsentationen zu $\mathbf{l} = (a \ b \ c)^T$ und $\mathbf{l}' = (a \ b \ c')^T$, wobei die ersten beiden Koordinaten identisch sind. Der Schnittpunkt der beiden Geraden ist durch Gleichung 3.2 zu $\mathbf{l} \times \mathbf{l}' = (c'-c)(b-a\ 0)$ gegeben. Dieser Vektor gehört zu der Klasse $(b-a\ 0)^T$. Bei der Berechnung der nicht homogenen Koordinaten dieses Punktes $(b/0 - a/0)^T$ treten unendlich große Werte auf, die zu der Annahme führen, dass der Punkt im Unendlichen liegt. Im Allgemeinen korrespondieren Punkte der Form $(x \ y \ 0)^T$ mit keinen endlichen Punkten in \mathbb{R}^2 . Diese Beobachtung stimmt mit der Idee überein, dass sich zwei parallele Geraden im Unendlichen schneiden. Punkte $\mathbf{x} = (x \ y \ z)^T$ mit $\mathbf{z} = 0$ werden ideale Punkte oder Punkte im Unendlichen genannt.

3.3 Kameramodell

Um die Funktionsweise einer Kamera zu erklären, wird das einfache Lochbildkameramodell herangezogen. Hierbei wird der Raum durch eine Zentralprojektion auf eine Ebene (Bildebene) projiziert. Das Zentrum der Projektion liegt im Ursprung des euklidischen Koordinatensystems. In diesem Zusammenhang wird dieser Punkt auch Kamerazentrum, Augpunkt oder optisches Zentrum genannt. Die Bildebene wird gebildet aus allen Punkten $(x \ y \ z)^T$, für die gilt z = f. Die Projektion eines Punktes **p** im Raum ist definiert als der Schnittpunkt der Projektionsebene mit der Geraden **g** durch **p** und das Projektionszentrum. Zur Verdeutlichung ist Abbildung 3.1 zu nennen. Es ist leicht zu sehen, dass $\mathbf{p} = (X \ Y \ Z)^T$ auf den Punkt $(fX/Z \ fY/Z \ f)^T$ projiziert wird. Bei der Transformation von Welt- in Bildkoordinaten findet ein Wechsel vom 3-dimensionalen in den 2-dimensionalen euklidischen Raum statt. Folgende Gleichung beschreibt diesen Vorgang

$$(X Y Z)^T \longmapsto (fX/Z fY/Z)^T.$$
(3.5)

Die Gerade durch das Projektionszentrum senkrecht zur Bildebene wird Sichtgerade genannt. Der Schnittpunkt dieser Geraden mit der Bildebene heißt Bildhauptpunkt. Die Parallelebene zur Bildebene durch den Augpunkt heißt Sichtebene.

Betrachtet man den abzubildenden Weltpunkt und den Bildpunkt als homogene Vektoren, so ergibt sich die Zentralprojektion als eine Abbildung, die durch eine Matrix beschrieben werden kann.

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \longmapsto \begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{bmatrix} f & 0 \\ f & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$
(3.6)

Im Folgenden werden die Notation **X** für einen Weltpunkt in 4-dimensionalen homogenen Koordinaten $(X \ Y \ Z \ 1)^T$ und **x** für einen Bildpunkt in 3-dimensionalen homogenen Koordinaten und *P* für die homogene Kameraprojektionsmatrix verwendet. Zusammengefasst ergibt sich

Abbildung 3.1: Abbildung einer Lochbildkamera von X nach x. C ist das Kamerazentrum und p der Hauptpunkt. Das Kamerazentrum befindet sich im Ursprung des Koordinatensystems. Die Bildebene ist parallel zur Ebene z = 0.

$$\mathbf{x} = P\mathbf{X}.\tag{3.7}$$

Weiterhin sei die 3×3 Diagonalmatrix mit den Diagonaleinträgen f, fund 1 gegeben durch diag(f, f, 1) und [I | 0] eine zweigeteilte Matrix mit der 3×3 Einheitsmatrix plus einen Spaltenvektor, in diesem Fall der Nullvektor. Beachtet man diese Definitionen, so kann P geschrieben werden als

$$P = diag(f, f, 1)[I \mid \mathbf{0}]. \tag{3.8}$$

Abbildung 3.2: Unterschied zwischen Bildkoordinatensystem(x y) und Kamerakoordinatensystem $(x_{kam} y_{kam})$

Bisher wurde davon ausgegangen, dass der Ursprung des Bildkoordinatensystems sich im Bildhauptpunkt befindet. In der Praxis ist es aber sehr oft

10

so, dass der Nullpunkt sich in einer Ecke des Bildes befindet. Angenommen der Hauptpunkt befindet sich an Position $(p_0 \ p_1)^T$ (siehe Abbildung 3.2), dann ergibt sich die Abbildung zu

$$\begin{pmatrix} X\\Y\\Z\\1 \end{pmatrix} \longmapsto \begin{pmatrix} fX+Zp_0\\fY+Zp_1\\Z \end{pmatrix} = \begin{bmatrix} f & p_0 & 0\\ f & p_1 & 0\\ & 1 & 0 \end{bmatrix} \begin{pmatrix} X\\Y\\Z\\1 \end{pmatrix}$$
(3.9)

Der kamera
spezifische Teil dieser Abbildung wird zur Kamerakalibrierungsmatri
x ${\cal K}$ zusammengefasst

$$K = \begin{bmatrix} f & p_0 \\ f & p_1 \\ & 1 \end{bmatrix}.$$
 (3.10)

Die Beziehung zwischen einem Punkt X und seinem Bild \mathbf{x}_{Kam} in Kamerakoordinaten wird durch

$$x_{Kam} = K[I \mid \mathbf{0}]X \tag{3.11}$$

beschrieben.

Charge Coupled Device (CCD)-Kameras Das Lochkameramodell geht davon aus, dass die Koordinaten des Bildpunktes in beliebiger Genauigkeit angegeben werden können. In der Praxis werden hauptsächlich CCD-Kameras genutzt, die nur eine begrenzte Auflösung haben. Die Bildebene besteht dabei aus einem Feld von CCD-Sensoren. Bei der Messung der Bildpunkte findet aufgrund der endlichen Menge der Sensoren eine Diskretisierung der Koordinaten statt.Da der Bildpunkt in Pixeln gemessen wird, die Koordinaten des Weltpunktes **X** aber in einer anderen Maßeinheit, muss hier eine zusätzliche Transformation stattfinden. Sei $1/m_x$ die Ausdehnung eines Pixels in x-Richtung und $1/m_y$ in y-Richtung, dann ergibt sich K zu

$$K = \begin{bmatrix} m_x & & \\ & m_y & \\ & & 1 \end{bmatrix} \begin{bmatrix} f & p_0 \\ & f & p_1 \\ & & 1 \end{bmatrix} = \begin{bmatrix} \alpha_x & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{bmatrix}$$
(3.12)

wobei $\alpha_x = fm_x$, $\alpha_y = fm_y$, $x_0 = m_x p_x$ und $y_0 = m_y p_y$. Der Punkt $(x_0 y_0)^T$ beschreibt den Hauptpunkt in Pixelkoordinaten.

Im Optimalfall sind die CCD-Sensoren rechtwinklig angeordnet und die Pixelkoordinate wird mit Hilfe von rechtwinkligen Einheitsvektoren angegeben. Falls dies nicht der Fall ist, müssen die Pixeleinheitsvektoren als Summe der Welteinheitsvektoren berechnet werden. Dies wird durch den Faktor s (skew) erreicht. Zusammengefasst kann die Kalibrierungsmatrix in der Form

$$K = \begin{bmatrix} \alpha_x & s & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{bmatrix}$$
(3.13)

angenommen werden.

Die Parameter dieser Matrix werden intrinsische Parameter genannt. Mit Hilfe der Gleichung 3.13 kann die Abbildung vom Kamerakoordinatensystem durch die Linse auf das CCD-Sensorfeld beschrieben werden. Diese Abbildung ist von Kamera zu Kamera unterschiedlich. Ist sie aber einmal bestimmt, bleibt sie über alle Aufnahmen gleich. Die Abbildung eines Punktes \mathbf{X} im Raum auf den Wert in Pixelkoordinaten der Kamera ist nicht nur abhängig vom Aufnahmegerät, sondern auch von der Position und Aufnahmerichtung. Demnach muss erst eine Transformation des Weltkoordinatensystems in das Kamerakoordinatensystem stattfinden.

$$\mathbf{X}_{KKS} = R(\mathbf{X} - \mathbf{C}) \Rightarrow \mathbf{X}_{KKS} = \begin{bmatrix} R & -RC \\ 0 & 1 \end{bmatrix} \mathbf{X}$$
(3.14)

Hierbei sei **C** die Position des Kamerazentrums und R eine 3×3 Rotationsmatrix. Ist die Transformation ins Kamerakoordinatensystem (KKS) vollzogen, ergibt sich die Kameramatrix P zu

$$P = K[I \mid \mathbf{0}]X_{KKS} \tag{3.15}$$

$$= K[I \mid \mathbf{0}] \begin{bmatrix} R & -RC \\ 0 & 1 \end{bmatrix} \mathbf{X}$$
(3.16)

$$= K[R \mid -R\mathbf{C}]\mathbf{X} \tag{3.17}$$

$$=K[R \mid \mathbf{t}]\mathbf{X} \tag{3.18}$$

mit $\mathbf{t} = -\mathbf{R}\mathbf{C}$.

3.4 Rückprojektion

Ist der Punkt auf der Bildebene bekannt, kann mit Hilfe der Kameramatrix eine Aussage über das Urbild der Zentralprojektion gemacht werden. Hierbei ist die Position nicht eindeutig bestimmt, denn man kann nur sagen, dass sich das Urbild auf einem bestimmten Sehstrahl befindet. Die Rückprojektion sei wie folgt gegeben:

$$\mathbf{X} = P^+ \mathbf{x} \tag{3.19}$$

 P^+ ist hierbei die Pseudoinverse von P für die gilt $P^+P = I$.

$$P^+ = (K[R \mid \mathbf{t}])^{-1}$$
$$= [R \mid \mathbf{t}]^{-1}K^{-1}$$

Kapitel 4

Zwei-Bild-Geometrie

Im Folgenden wird auf die Epipolargeometrie eingegangen, indem zuerst die Bedeutung und Herleitung der Fundamentalmatrix erklärt wird, um dann Verfahren vorzustellen, die dieses Objekt schätzen können.

4.1 Fundamentalmatrix

In der Zwei-Bild-Geometrie wird jeweils die Projektion des Raumes auf zwei unterschiedlichen Bildebenen betrachtet. Die Epipolargeometrie beschreibt nun den Zusammenhang der beiden Abbildungen zueinander. Dabei ist sie unabhängig von der Struktur der betrachteten Szene und hängt nur von den internen Kameraparametern, der Position und der Aufnahmerichtung der Kamera ab. Die Fundamentalmatrix, das wesentlichste Objekt der Epipolargeometrie, kapselt genau diese Parameter. Sie ist der Zusammenhang zwischen den Bildpunkten \mathbf{x} und \mathbf{x} ' des Urbildes \mathbf{X} . Wie in den folgenden Abschnitten beschrieben wird, kann die Fundamentalmatrix aufgrund von speziellen Eigenschaften aus einer Menge von Punktkorrespondenzen berechnet werden. Dabei müssen die internen Kameraparameter nicht bekannt sein. Sind diese jedoch bekannt, können Rückschlüsse über die relative Bewegung der beiden Kameras geschlossen werden.

Geometrische Bedeutung Zur Verdeutlichung der Fundamentalmatrix wird Bild 4.1 betrachtet. Der Punkt **X** im Raum wird durch das Kamerazentrum **C** auf den Punkt **x** in der Bildebene π abgebildet. Sind die Koordinaten von π und **C** bekannt, kann ausgehend vom Bildpunkt **x** die genaue Position des Punktes **X** nicht vorhergesagt werden. Stattdessen kann, wie in (3.4) beschrieben, nur ausgesagt werden, dass **X** sich auf einem bestimmten Sehstrahl durch den Punkt **x**' und das Kamerazentrum **C** befindet. Sind weiterhin die Kameraparameter einer zweiten Aufnahme bekannt, kann ohne weitere Informationen über den Punk X gesagt werden, dass der Projektionspunkt \mathbf{x}' von X sich auf der Geraden l' in der zweiten Bildebene befindet. Diese Gerade wird Epipolargerade genannt und ist die Zentralprojektion der Sichtgeraden in die zweite Bildebene π' .

Abbildung 4.1: Die Rückprojektion des Bildpunktes \mathbf{x} ergibt einen Sehstrahl, dessen Projektion in die Bildebene π' die Epipolargerade \mathbf{l}' ergibt

Die Abbildung des ersten Kamerazentrums **C** in die Ebene π' wird Epipol **e** genannt, der Punkt der Abbildung des zweiten optischen Zentrums heißt ebenso Epipol und wird mit **e**' bezeichnet. Die Gerade durch die Epipole und die Projektionszentren wird Basislinie genannt. Alle rückprojizierten Punkte **x** in der ersten Bildebene haben als gemeinsamen Punkt das Kamerazentrum. Folglich schneiden sich alle Epipolargeraden **l'** im Epipol **e'**. Aus Abbildung 4.1 ist ersichtlich, dass die Rückprojektionen der Punkte **x** und **x'** sich im Urbild **X** treffen. Zusammenfassend ist die Epipolargerade **l'** die Zentralprojektion des aus **x** rückprojizierten Strahls. Dies legt nahe, dass eine Abbildung existiert, die einem Bildpunkt in dem einen Bild eine entsprechende Epipolarlinie im anderen Bild zuordnet

$$\mathbf{x} \longmapsto \mathbf{l}^{\prime}.$$
 (4.1)

Geometrische Herleitung Zur geometrischen Herleitung wird zuerst eine Hilfsebene π^* erstellt, die keine der beiden Kamerazentren enthält. Zur Veranschaulichung kann Abbildung 4.1 betrachtet werden. Die Rückprojektion des Punktes **x** ergibt eine Gerade, die die Ebene π^* im Punkt **X** schneidet. Dieser wird nun auf den Punkt **x**' der zweiten Bildebene projiziert. Variiert man die Punktemenge **x**_i, so bekommt man eine Menge **x**'_i, welche projektiv äquivalent ist. Somit existiert ein 2D Homomorphismus H^*_{π} , der **x**_i mit **x**'_i verknüpft.

Da sowohl \mathbf{x}' als auch \mathbf{e}' auf der Epipolarlinie liegen, kann in homogenen

4.1. FUNDAMENTALMATRIX

Koordinaten folgendes ausgedrückt werden: $\mathbf{l'} = \mathbf{e'} \times \mathbf{x'} = [\mathbf{e'}]_{\times} \mathbf{x'}$. Zusätzlich gilt $\mathbf{x'} = H_{\pi}^* \mathbf{x}$ und daraus folgt

$$\mathbf{l}' = [\mathbf{e}']_{\times} H_{\pi} \mathbf{x} = F \mathbf{x}, \tag{4.2}$$

wodurch die Fundamentalmatrix $F = [\mathbf{e'}]_{\times} H_{\pi}$ definiert wird. Da $[\mathbf{e'}]_{\times}$ Rang zwei und H Rang drei hat, muss die daraus resultierende Fundamentalmatrix F Matrixrang zwei haben.

Algebraische Herleitung Die Projektionsmatrix P mit $P\mathbf{X} = \mathbf{x}$ bezeichnet im Folgenden P^+ die pseudoinverse Matrix, für die gilt $P^+P =$ I. Aus der Projektion P mit $P\mathbf{X} = \mathbf{x}$ ergibt sich nach [1] eine 1-dimensionale Lösungsmenge für den rückprojizierten Strahl zu

$$\mathbf{X} = P^+ \mathbf{x} + \lambda \mathbf{C}. \tag{4.3}$$

Im Folgenden werden zwei Punkte $P^+\mathbf{x}$ ($\lambda = 0$) und das Kamerazentrum \mathbf{C} ($\lambda = \infty$) dieses Strahls genauer betrachtet. Die zweite Projektion P' bildet nun diese Punkte auf die Punkte $P'P^+\mathbf{x}$ und $P'\mathbf{C}$ ab. Die gesuchte Epipolargerade **l**' zu \mathbf{x} ist die Gerade durch diese beiden Bildpunkte. Nach Gleichung 3.4 gilt für die Definition einer Geraden durch zwei Punkte

$$\mathbf{l}' = P'\mathbf{C} \times P'P^{+}\mathbf{x}$$

= $\mathbf{e}' \times P'P^{+}\mathbf{x}$
= $[\mathbf{e}']_{\times}P'P^{+}\mathbf{x}$
= $F\mathbf{x}$

Somit ergibt sich die Fundamentalmatrix zu

$$F = [\mathbf{e'}]_{\times} P' P^+ \tag{4.4}$$

Eigenschaften von F

- **Transponierte**: Ist F die Fundamentalmatrix zum Kamerapaar (P, P'), dann ist F^T die Fundamentalmatrix zur umgekehrten Folge (P', P).
- Epipolargeraden: Für jeden Punkt \mathbf{x} im ersten Bild ist \mathbf{l}' mit $\mathbf{l}' = F\mathbf{x}$ die korrespondierende Epipolargerade. Aus obiger Eigenschaft ist zu sehen, dass die Epipolargerade \mathbf{l} des Punktes \mathbf{x}' im zweiten Bild sich aus der Gleichung $\mathbf{l} = F^T \mathbf{x}'$ ergibt.

- Epipole: Für jeden Punkt x gilt, dass die dazugehörige Epipolargerade l' mit l' = Fx den Epipol e' enthält. Nach Gleichung (3.2) gilt also e'^Tl' = e'^T(Fx) = (e'^TF)x = 0^T für alle x. Daraus folgt, dass e'^TF = 0 bzw. e' der linksseitige Nullvektor von F ist. Analog ergibt sich, dass e der rechtsseitige Nullvektor von F ist.
- Freiheitsgrade: F ist eine homogene 3x3 Matrix. Diese Matritzen haben acht Freiheitsgrade, da sie durch Skalierung ineinander überführbar sind. Da F aber zusätzlich noch Rang zwei hat und somit $\det(F) = 0$ erfüllt sein muss, entfällt ein Freiheitsgrad. Somit hat F sieben Freiheitsgrade.
- Invertierbarkeit: Es gibt zwei Wege zu zeigen, dass F nicht invertierbar ist. Zum einen ist durch die Eigenschaft det(F) = 0 eine Invertierung nicht möglich und zum anderen wird durch die Betrachtung der korrespondierenden Epipolargeraden $(\mathbf{l}', \mathbf{l})$ klar, dass alle Punkte \mathbf{x} der Geraden $\mathbf{l} = F^T \mathbf{x}'$ auf dieselbe Gerade \mathbf{l}' abgebildet werden. Somit kann keine Umkehrabbildung existieren.

4.2 Berechnung der Fundamentalmatrix

Im nächsten Abschnitt werden Verfahren vorgestellt, die die Fundamentalmatrix aus Punktkorrespondenzen berechnen können.

4.2.1 8-Punkte-Algorithmus

Wie im obigen Abschnitt gezeigt, liegt ein Punkt \mathbf{x}' einer 2D Punktkorrespondenz ($\mathbf{x} \leftrightarrow \mathbf{x}'$) auf der zugehörigen Epipolargeraden $\mathbf{l}' = F\mathbf{x}$. Wenn ein homogener Punkt auf einer homogenen Geraden liegt, ist Gleichung (3.2) erfüllt. Daraus folgt:

$$\mathbf{x'}^T F \mathbf{x} = 0 \tag{4.5}$$

Sind genügend Korrespondenzen bekannt, kann mit diesem Wissen und Gleichung 4.5 die Fundamentalmatrix berechnet werden. Sei $\mathbf{x} = (x \ y \ 1)^T$ und $\mathbf{x}' = (x' \ y' \ 1)^T$ ein Paar aus der Menge der Punktkorrespondenzen und f_{ij} der Eintrag der Fundamentalmatrix in der i-Zeile der j-Spalte dann gilt:

$$\mathbf{x}^{T} F \mathbf{x} = \begin{pmatrix} x' & y' & 1 \end{pmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = 0$$
(4.6)

Diese Schreibweise führt zu der folgenden Gleichung

$$(x'xf_{11}, x'yf_{12}, x'f_{13}, y'xf_{21}, y'yf_{22}, y'f_{23}, xf_{31}, yf_{32}, f_{33}) = 0$$
(4.7)

Wird die Fundamentalmatrix nun als 9-elementiger Vektor $\mathbf{f} = (f_{11} \dots f_{33})^T$ betrachtet, ergibt sich aus Gleichung 4.7

$$(x'x, x'y, x', y'x, y'y, y', x, y, 1) \mathbf{f} = 0$$
(4.8)

Aus n Korrespondenzen ergibt sich so ein Gleichungssystem der folgenden Form

$$A\mathbf{f} = \begin{bmatrix} x_1'x_1 & x_1'y_1 & x_1' & y_1'x_1 & y_1'y_1 & y_1' & x_1 & y_1 & 1\\ \vdots & \vdots\\ x_n'x_n & x_n'y_n & x_n' & y_n'x_n & y_n'y_n & y_n' & x_n & y_n & 1 \end{bmatrix} \mathbf{f} = \mathbf{0}$$
(4.9)

Da es sich hier um ein System von Gleichungen aus homogenen Punkten handelt, kann **f** nur bis auf einen Skalenfaktorfehler berechnet werden. Daraus ergibt sich, dass A maximal Rang acht haben darf, damit eine Lösung existiert. Ist er genau acht, so existiert, bis auf Skalierung, genau eine Lösung. In diesem Fall spannt **f** den Eigenraum der Matrix A auf und kann mit linearen Methoden gefunden werden. Für den Fall, dass die Korrespondenzen verrauscht sind, kann der Rang von A größer als acht sein. Das Ergebnis muss mit einem Ausgleichsalgorithmus gesucht werden. Eine Möglichkeit dies zu tun, ist den Eigenvektor mit dem kleinsten Eigenwert der Matrix A zu suchen. Sei UDV^T eine SVD-Zerlegung von A, so ist der letzte Spaltenvektor der Matrix V die Lösung, die $||A\mathbf{f}||$ unter der Bedingung $||\mathbf{f}||=1$ minimiert. Um das Ergebnis des Algorithmus zu stabilisieren, nehmen Hartley und Zis-

serman [1] vor Beginn des 8-Punkte-Algorithmus eine Normierung der Bilddaten vor. Dabei werden alle Punkte so verschoben, dass der Schwerpunkt aller Punkte im Ursprung liegt. Zusätzlich werden alle Punkte so skaliert, dass der mittlere euklidische Abstand $\sqrt{2}$ beträgt.

4.2.2 7-Punkte-Algorithmus

Wie im obigen Abschnitt beschrieben, kann aus Gleichung 4.5 mit Hilfe der Punktkorrespondenzen ein Gleichungssystem A $\mathbf{f} = 0$ erstellt werden. Hat die Matrix A Rang acht, so ist es möglich \mathbf{f} bis auf einen Skalenfehler zu berechnen. Hat A aber nur Rang sieben, so ergibt sich ein 2-dimensionaler Eigenraum. Dieser Raum wird durch die Vektoren \mathbf{f}_1 und \mathbf{f}_2 aufgespannt. Alle Linearkombinationen dieser Vektoren sind Lösungen der Gleichung $A\mathbf{f} = 0$. Aus diesem Grund kann die gesuchte Fundamentalmatrix F als eine Linearkombination $F = \alpha F_1 + (1 - \alpha)F_2$ geschrieben werden. Die Fundamentalmatrix hat Rang zwei und damit ist $\det(F) = 0$. Diese Bedingung auf die Linearkombination angewendet, ergibt

$$det(F) = det(\alpha F_1 + (1 - \alpha)F_2) = 0.$$
(4.10)

Da F_1 und F_2 bekannt sind, ergibt Gleichung 4.10 ein Polynom vom Grad drei. Diese Gleichung kann benutzt werden, um α zu berechnen, wodurch sich entweder eins, zwei oder drei reelle Lösungen für α ergeben. Diese Ergebnisse in Gleichung 4.10 eingesetzt, ergeben eins, zwei oder drei Lösungen für die Fundamentalmatrix. Um aus diesen Lösungen die richtige Fundamentalmatrix zu finden, müssen alle Korrespondenzen bezüglich dieser Lösungen gegengetestet werden, indem der Abstand der Korrespondenzen zur jeweiligen Lösung berechnet wird. Verschiedene Definitionen des Abstands werden in Kapitel 4.5 beschrieben. Die Matrix mit dem besten Ergebnis ist die gesuchte Fundamentalmatrix.

Der Vorteil dieser Methode ist, dass nur sieben Korrespondenzen benötigt werden, um die Fundamentalmatrix zu berechnen. Dies birgt sowohl einen Vorteil bei der SVD-Zerlegung der Matrix A als auch bei einer Anwendung zur robusten Schätzung der Fundamentalmatrix (siehe Kapitel 4.6). Als Nachteil ist zu nennen, dass bei drei gefundenen Lösungen alle Korrespondenzen dreimal durchgetestet werden müssen.

4.3 Essentielle Matrix

Durch die Fundamentalmatrix ist die Beziehung zwischen zwei Korrespondenzen ($\mathbf{x} \leftrightarrow \mathbf{x}'$) in der Bildebene beschrieben. Diese werden in Pixeln gemessen und stehen nicht im direkten Bezug zum Weltkoordinatensystem. Erst durch die Kamerakalibrierungsmatrix können durch Bilddaten Aussagen über die Welt gemacht werden. Ist diese Matrix bekannt, können die Korrespondenzen, bezogen auf das Weltkoordinatensystem, angegeben werden

$$\hat{\mathbf{x}} = K^{-1} \mathbf{x}.\tag{4.11}$$

Liegen die Zuordnungen in dieser Form vor, spricht man von normalisierten Koordinaten. Setzt man das Ergebnis in die Projektionsgleichung 3.18 ein, so gilt für normalisierte Daten:

$$\hat{\mathbf{x}} = K^{-1}\mathbf{x}$$
$$= K^{-1}K[R \mid \mathbf{t}]\mathbf{X}$$
$$= K[R \mid \mathbf{t}]\mathbf{X}$$

Die Kameramatrix $K^{-1}P = [R \mid \mathbf{t}]\mathbf{X}$ wird normalisierte Kameramatrix genannt.

Die Essentielle Matrix ist definiert als die Matrix, für die gilt:

$$\hat{\mathbf{x}}^T E \hat{\mathbf{x}}' = 0 \tag{4.12}$$

Setzt man für $\hat{\mathbf{x}}$ und $\hat{\mathbf{x}'}$ die entsprechenden Werte aus Gleichung 4.11 ein, führt das zu $\mathbf{x'}^T K^{-T} E K^{-1} \mathbf{x} = 0$. Aus 4.5 ist bekannt, dass $\mathbf{x'}^T F \mathbf{x} = 0$ gilt. Verknüpft man dieses Wissen folgt

$$E = K'^T F K \tag{4.13}$$

Daraus ist ersichtlich, dass falls K bekannt ist, E auf zwei Arten berechnet werden kann. Man kann entweder erst F schätzen und E aus Formel (4.13) berechnen oder E direkt aus den normalisierten Korrespondenzen und mit Hilfe von Gleichung 4.12 schätzen. Nach Hartley und Zisserman [1] hat die Essentielle Matrix die gleichen Eigenschaften wie die Fundamentalmatrix mit der Zusatzbedingung, dass die beiden Eigenwerte λ_1 und λ_2 gleich sind. Die normalisierte Kameramatrix kann als Spezialfall der allgemeinen Kameramatrix angenommen werden mit K = K' = I. Aus Gleichung 4.13 folgt somit F = E. In [1] wird gezeigt, dass unter der Bedingung $P = K[I \mid \mathbf{0}]$ und $P' = K'[R \mid \mathbf{0}]$ gilt $F = [K'\mathbf{t}]_{\times}K'RK^{-1}$. Im Falle von normalisierten Kameramatrizen kommt man zu dem Schluss

$$E = [K'\mathbf{t}]_{\times}K'RK^{-1} = [\mathbf{t}]_{\times}R \tag{4.14}$$

Dies bedeutet, dass E ein Produkt aus einer schiefsymmetrischen Matrix $S = [\mathbf{t}]_{\times}$ und einer Rotationsmatrix R ist. Ziel ist es nun, diese beiden Bestandteile zu berechnen.

Faktorisierung Der Unterschied zwischen der Fundamentalmatrix und der Essentiellen Matrix liegt darin, dass die projektive Ungenauigkeit entfällt und sich die Kameramatrizen bis auf einen Skalierungsfaktor und eine Auswahlmöglichkeit von vier verschiedenen Matrizen berechnen lassen.

Unter der Annahme, dass die erste Kameramatrix P die Form $P = [I \mid \mathbf{0}]$ hat, wird eine Zerlegung SR von $E = [\mathbf{t}]_{\times}R$ gesucht, um die zweite Kameramatrix P' zu berechnen. S ist dabei eine Schiefsymmetrische Matrix und R eine Rotationsmatrix. Um dies zu erreichen, werden die Matrizen W und Z definiert

$$W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(4.15)

$$Z = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(4.16)

Sei $E = UDV^T$ die SVD-Zerlegung von E, so gibt es nach Hartley und Zisserman [1] zwei mögliche Faktorisierungen E = SR

$$S = UZU^T \ R = UWV^T \ oder \ UW^T V^T.$$

$$(4.17)$$

Aus der Bedingung $S\mathbf{t} = [\mathbf{t}]_{\times}\mathbf{t} = 0$ folgt $\mathbf{t} = U(0 \ 0 \ 1)^T$, so dass der Translationsvektor \mathbf{u}_3 die dritte Spalte von U enthält. Zu beachten ist, dass für ein \mathbf{t} die Gleichung $S(k\mathbf{t}) = 0$ für alle $k \in \mathbb{Z}$ ebenfalls erfüllt ist. Daraus ergibt sich, dass der Translationsvektor \mathbf{t} nur bis auf einen Skalenfehler berechnet werden kann.

Aus der dualen Darstellung von R und dem unbekannten Vorzeichen des Translationsvektors u_3 ergeben sich vier mögliche Lösungen für P':

$$P' = \begin{bmatrix} UWV^T \mid +\mathbf{u}_3 \end{bmatrix}, \begin{bmatrix} UWV^T \mid -\mathbf{u}_3 \end{bmatrix}, \begin{bmatrix} UW^TV^T \mid +\mathbf{u}_3 \end{bmatrix} oder \begin{bmatrix} UW^TV^T \mid -\mathbf{u}_3 \end{bmatrix}$$
(4.18)

Abbildung 4.2: Die Abbildung zeigt die vier Lösungen der Faktorisierung aus der Gleichung 4.18. Bei nur einer Lösung liegt der Schnittpunkt X der Rückprojektion von x und x' im Sichtbereich beider Kameras.

Abbildung 4.2 zeigt die vier Varianten der Lösung. Dabei ist zu sehen, dass sich nur bei einer Möglichkeit das abzubildende Objekt vor beiden Kameras befinden kann bzw. die Position gegenüber beiden Koordinatensystemen mit positivem Z-Wert angegeben werden kann. Die vier Lösungen müssen anhand eines Sichtbarkeitstests überprüft werden und nur eine wird diesen Test bestehen.

4.4 3D-Rekonstruktion

Wie in Kapitel 1.2 erwähnt, ist das Ziel dieser Arbeit eine Methode zu entwickeln, die die relative Orientierung im Raum zweier Kameras bestimmt. Im vorigen Kapitel ist gezeigt worden, wie die Projektionsgleichung $P' = K'[R \mid \mathbf{t}]\mathbf{X}$ berechnet werden kann. Bei dieser Abbildung werden jedoch die abzubildenden Punkte \mathbf{X} in das Kamerakoordinatensystem überführt. Gesucht ist aber die Transformation des Koordinatensystems und damit die relative Orientierung der Kamera. Somit ergibt sich die relative Drehung R_K der Kamera zu

$$R_K = R^{-1} = R^T. (4.19)$$

Die Translation \mathbf{t} ist gegenüber der Basis des zweiten Kamerakoordinatensystems angegeben. Da die Drehung gegenüber der Basis des ersten Kamerakoordinatensystems bekannt ist, ist es sinnvoll, die Translation mit Hilfe der ersten Basis darzustellen. \mathbf{t} bezieht sich ebenfalls auf die Translation der Punkte. Die Translation \mathbf{t}_k der Kamera ergibt sich zu $\mathbf{t}_k = -\mathbf{t}$. Zusammenfassend gilt für \mathbf{t}_k angegeben mit der ersten Basis

$$\mathbf{t}_k = -R^{-1} = -R^T \mathbf{t}. \tag{4.20}$$

Aus Kapitel 4.3 ist bekannt, dass \mathbf{t} bzw. \mathbf{t}_k nur bis auf einen Skalenfaktorfehler berechnet werden kann. Bei der Betrachtung einer Bildfolge von n Bildern treten bei einem Einzelvergleich auch n Skalenfaktorfehler auf. Die relative Positionierung der Kamera zwischen beliebigen Bildern ist deshalb nicht möglich. Sei \mathbf{t}_{ij} die Richtung der Translation von Bild i zu j, und R_{ij} sei die jeweilige Rotation. Die drei Vektoren \mathbf{t}_{12} , \mathbf{t}_{23} und \mathbf{t}_{13} sind von der Länge her nicht bekannt, wohl aber die Winkel zueinander. Somit kann aus ihnen ein Dreieck gebildet werden und die Länge der Vektoren \mathbf{t}_{23} und \mathbf{t}_{13} mit Hilfe des Sinussatzes im Verhältnis zu der Länge des Vektors \mathbf{t}_{12} angegeben werden

$$\frac{1}{\sin\beta} = \frac{\lambda_1}{\sin\alpha} = \frac{\lambda_2}{\sin\gamma} \Rightarrow$$
$$\alpha = \cos^{-1}\left(\frac{(R_{23}\mathbf{t}_{12})^T\mathbf{t}_{13}}{\|\mathbf{t}_{12}\| \cdot \|\mathbf{t}_{13}\|}\right)$$
$$mit\ \beta = \cos^{-1}\left(\frac{\mathbf{t}_{13}^T\mathbf{t}_{23}}{\|\mathbf{t}_{13}\| \cdot \|\mathbf{t}_{23}\|}\right)$$
$$mit\ \gamma = \cos^{-1}\left(\frac{(R_{23}\mathbf{t}_{12})^T\mathbf{t}_{23}}{\|\mathbf{t}_{12}\| \cdot \|\mathbf{t}_{23}\|}\right).$$

4.5 Kostenfunktionen

In Kapitel 4.2.1 und 4.2.2 wurde davon ausgegangen, dass die gemessenen Punktkorrespondenzen ohne Fehler aufgenommen wurden. Sobald aber die Messdaten mit Rauschen behaftet sind, ist das Gleichungssystem $A\mathbf{f} = 0$ überbestimmt und nicht mehr lösbar. In diesem Fall muss eine Lösung gefunden werden, die möglichst nahe an der rauschfreien Lösung liegt. Um dies zu erreichen, werden verschiedene Abstandsmodelle vorgestellt, die den Abstand der Matrix F zu den Korrespondenzen $\mathbf{x} \leftrightarrow \mathbf{x}'$ beschreiben. Mit Hilfe eines Minimierungsalgorithmus kann die Distanz über alle Abstände minimiert werden und so die durch das Rauschen auftretende Ungenauigkeit verringert werden. In dieser Arbeit wurde der Levenberg-Marquardt-Algorithmus zur Minimierung verwendet, der als bekannt angenommen wird und hier nicht weiter erläutert werden soll.

4.5.1 Algebraische Distanz

Der 8-Punkte-Algorithmus sucht ein \mathbf{f} , sodass die Norm $||A\mathbf{f}||$ unter der Bedingung $||\mathbf{f}|| = 1$ minimiert wird. Der Vektor $\epsilon = A\mathbf{f}$ wird Residuenvektor genannt. Je näher dieser Vektor am Koordinatenursprung liegt, desto besser ist die Schätzung für \mathbf{f} . Die i-te Komponente ϵ_i des Residuenvektors entsteht durch Multiplikation des i-ten Zeilenvektors der Matrix A mit dem Vektor h. Da diese Zeile aus Gleichung 4.5 mit den jeweiligen Korrespondenz $\mathbf{x}_i \leftrightarrow \mathbf{x}'_i$ gebildet wird, erzeugt jede Zuordnung einen Teilfehlervektor ϵ_i des gesamten Fehlervektors ϵ . Der Vektor ϵ_i symbolisiert somit den algebraischen Fehlervektor zwischen Korrespondenzen $\mathbf{x}_i \leftrightarrow \mathbf{x}'_i$ und der Matrix F. Der algebraische Fehler wird durch die Norm dieses Fehlervektors gebildet

$$d_{alg}(\mathbf{x}'_{i}, F\mathbf{x}_{i})^{2} = \|\epsilon_{i}\|^{2} = \|\mathbf{x}'_{i}^{T}F, \mathbf{x}_{i}\|^{2}.$$
(4.21)

Der algebraische Fehlervektor $\epsilon = A\mathbf{f}$ für die gesamte Menge der Korrespondenzen ergibt sich aus der Summe der einzelnen algebraischen Distanzen:

$$\sum_{i} d_{alg}(\mathbf{x}'_{i}, F\mathbf{x}_{i})^{2} = \sum_{i} \|\epsilon_{i}\|^{2} = \|A\mathbf{f}\|^{2} = \|\epsilon\|^{2}$$
(4.22)

Ein Problem bei diesem Verfahren ist, dass der zu minimierende Wert weder eine geometrische noch eine statistische Veranschaulichung bietet. Mit einer guten Normalisierung der Korrespondenzdaten führt eine Minimierung des algebraischen Fehlers zu einer guten Lösung (siehe Kapitel 4.2.1). Die Vorteile sind, dass die berechnete Lösung eindeutig und der rechnerische Aufwand gering ist. Lösungen, die auf der algebraische Distanz basieren, werden oft benutzt, um eine erste Näherung für nicht-lineare Minimierungsalgorithmen zu berechnen. Aufgrund von zusätzlichem Wissen über die Fehlerverteilung kann so eine noch genauere Lösung berechnet werden.

4.5.2 Geometrische Distanz

Als nächstes werden alternative Kostenfunktionen vorgestellt, die sich mit den geometrischen Distanzen in den Bildern beschäftigen. Sie minimieren den Fehler zwischen gemessener und geschätzter Bildkoordinate.

Um Missverständnissen vorzubeugen werden folgende Konventionen vereinbart: der Vektor \mathbf{x} repräsentiert die gemessene Bildkoordinate, $\hat{\mathbf{x}}$ die geschätzten Werte und $\bar{\mathbf{x}}$ die tatsächlichen Werte der Abbildungspunkte.

Fehler in einem Bild Als erstes wird angenommen, dass die gemessenen Punkte \mathbf{x}_i im ersten Bild den realen Werten entsprechen. Der zu minimierende Fehler tritt also nur bei der Messung im zweiten Bild auf. Die Größe, die nun minimiert werden muss, ist die Abweichung zwischen dem Punkt \mathbf{x}' und der Epipolargeraden $\mathbf{l'} = \mathbf{F}\mathbf{\bar{x}}$ des Punktes $\mathbf{\bar{x}}$. Sie wird mit dem euklidischen Abstand des Punktes zur Geraden gemessen. Weiterhin wird die Schreibweise $d_{pl}(\mathbf{x},\mathbf{y})$ benutzt, um den euklidischen Abstand zwischen dem homogenen Punkt \mathbf{x} und der Geraden \mathbf{y} in homogenen Koordinaten zu repräsentieren. Der Fehler ergibt sich somit zu

$$\sum_{i} d_{pl}(\mathbf{x}'_{i}, F\bar{\mathbf{x}})^{2}.$$
(4.23)

Der Fehler aus Gleichung 4.23 muss für alle Korrespondenzen minimiert werden, um eine gute Schätzung \bar{F} der Matrix F zu erhalten.

Symmetrischer Fehler In der Realität ist nicht damit zu rechnen, dass die Messung im ersten Bild ohne Fehler abgelaufen ist. Es ist idealistisch anzunehmen, dass der Fehler nur in einem Bild zu suchen ist. Unter der Annahme, dass beide Messdaten ungenau sind, ist es sinnvoll, nicht nur den Fehler der Vorwärts-, sondern auch der Rückwärtstransformation zu berechnen und beide Fehler zu addieren. So summiert sich der Fehler zu

$$\sum_{i} d_{pl}(\mathbf{x}'_{i}, F\mathbf{x})^{2} + d_{pl}(\mathbf{x}_{i}, F^{-1}\mathbf{x}'_{i})$$

$$(4.24)$$

Auch hier ergibt sich eine gute Schätzung \hat{F} für F durch Minimierung der Gleichung 4.24 für alle Korrespondenzen.

Rückprojektions Fehler Ein anderer Ansatz der Kostenfestlegung besteht darin, den Abstand zwischen den gemessenen Punkten \mathbf{x} bzw. \mathbf{x}' und den fehlerfreien Punkten $\hat{\mathbf{x}}_i$ bzw. $\hat{\mathbf{x}}'_i$ zu berechnen, wobei die fehlerfreien Punkte durch die fehlerfreie Fundamentalmatrix \hat{F} verbunden sind. Zusammengefasst ergibt sich folgende Kostenfunktion, die minimiert werden soll:

$$\sum_{i} d_{pl}(\mathbf{x}'_{i}, \hat{\mathbf{x}}_{i})^{2} + d(\mathbf{x}_{i}, \hat{\mathbf{x}}'_{i}), wobei \ \hat{\mathbf{x}}'_{i} = \hat{F}\hat{\mathbf{x}}_{i} \ \forall i$$
(4.25)

Bei diesem Vorgang wird nicht nur \hat{F} berechnet, sondern auch die Hilfskorrespondenzen aus $\hat{\mathbf{x}}$ und $\hat{\mathbf{x}}'$. Ohne zusätzliches Wissen ist es nicht möglich, die perfekten Bilddaten zu berechnen. Ist jedoch z.B. bekannt, dass das Urbild der Punkte \mathbf{x} und \mathbf{x}' in einer bestimmten Ebene liegt, können Rückschlüsse auf das Urbild $\hat{\mathbf{X}}$ gezogen werden. Dieser Punkt wird dann in die jeweiligen Bildebenen zurückprojiziert, wodurch die perfekten Korrespondenzen $\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}'_i$ geschätzt werden können.

4.5.3 Sampson-Fehler

Aus Sicht der Komplexität ist es wesentlich einfacher, die algebraische Distanz zu minimieren als die geometrische, da hier nicht nur die Einträge der Matrix F, sondern auch die Punkte $\hat{\mathbf{x}}_i$, $\hat{\mathbf{x}}'_i$ geschätzt werden müssen. Im ersten Fall der algebraischen Distanz müssen 8 Parameter geschätzt werden und im geometrischen Fall bei n Korrespondenzen 7 + 3n Parameter. Wie aus dem experimentellen Teil der Arbeit zu ersehen, ist die Anzahl n der Zuordnungen in den meisten Fällen zwischen 20 und 100. Dies bedeutet eine hohe Berechnungslaufzeit für diesen Teil des Algorithmus. Um die Laufzeit zu verkürzen und trotzdem die Vorteile des geometrischen Verfahrens zu erhalten, wird die geometrische Distanz approximiert. Dieses Verfahren wird Sampson-Fehler (Sampson Error) [12] genannt und wurde 1982 eingeführt.

$$d_{Sampson} = \sum_{i} \frac{(\mathbf{x}_{i}^{*T} F \mathbf{x}_{i})_{1}^{2}}{(F \mathbf{x}_{i})_{1}^{2} + (F \mathbf{x}_{i})_{2}^{2} + (F^{T} \mathbf{x}_{i})_{1}^{2} + (F^{T} \mathbf{x}_{i})_{2}^{2}}$$
(4.26)

Die Schreibweise $(F\mathbf{x})_j^2$ bezeichnet das Quadrat des j-Zeilene
intrags von $F\mathbf{x}$.

4.6 Robuste Schätzungen

Die bisher vorgestellten Verfahren sind unter der Bedingung gültig, dass entweder perfekte Korrespondenzen vorliegen oder sie nur durch kleinere Störeffekte in Form von Rauschen beeinflusst werden. In diesen Fällen liefert ein einfaches Minimierungsverfahren, wie im 8-Punkte-Algorithmus gezeigt, eine gute Schätzung der Fundamentalmatrix. In der Praxis zeigt sich jedoch, dass die Menge der Korrespondenzen $S = {\mathbf{x}_i \leftrightarrow \mathbf{x}'_i}$ nicht nur mit Rauschen beaufschlagt ist, sondern dass diese Menge komplette Fehlzuordnungen (Ausreißer) enthält. Diese beeinflussen den Lösungsprozess in starkem Maße. Um auch aus solchen Korrespondenzmengen die richtige Fundamentalmatrix zu berechnen, wird ein ausreißertolerantes Verfahren benötigt, das die Fehlzuordnungen erkennt und von der Gesamtmenge S ausschließt. Im nachfolgenden Schritt kann nun über ein Standardminimierungsverfahren aus der Restmenge eine Lösung berechnet werden.

Im Anschluss werden auf die ausreißertoleranten Verfahren Random Sample Consensus (RANSAC)[17] und Least Median of Squares(LMedS) eingegangen.

4.6.1 Random Sample Consensus

RANSAC ist ein Algorithmus, der ausgehend von einer erzeugenden, minimalen Korrespondenzmenge ein Modell erstellt und nach und nach zu dieser Menge Korrespondenzen aus S hinzufügt, die mit dem Modell konsistent sind. In dieser Arbeit bildet das Modell die Annahme, dass die Punkte \mathbf{x}_i aus den Zuordnungen $\mathbf{x}_i \leftrightarrow \mathbf{x}'_i$ auf den Epipolargeraden $\mathbf{l}' = F\mathbf{x}'$ liegen. Durch mehrmaliges Durchlaufen dieser Anweisung werden mehrere Fundamentalmatritzen erstellt und diejenige als ausreißerfrei angenommen, die mit den meisten Korrespondenzen konsistent ist. Der Algorithmus geht dabei folgendermaßen vor:

- Per Zufall wird ein minimaler erzeugender Satz an Korrespondenzen $\mathbf{x}_i \leftrightarrow \mathbf{x}'_i$ (random sample) aus der Menge S selektiert und mit Hilfe dieses Satzes wird eine Schätzung für F berechnet.
- Danach wird die Teilmenge S_i aus S gebildet, deren Elemente $\mathbf{x} \leftrightarrow \mathbf{x}'$ die Bedingung $dist(\mathbf{x}', F\mathbf{x}) \leq t$ erfüllen. t ist dabei ein frei zu wählender Grenzwert. Der Index i bezeichnet die Menge im i-Durchlauf. Die Menge S_i wird Consenus Set genannt.
- Ist die Anzahl der Elemente in S_i größer als ein gewisser Schwellwert T, wird diese Menge als ausreißerfrei angenommen und mittels eines Standardverfahrens aus allen Zuordnungen aus S_i eine neue Schätzung berechnet. Danach wird der Algorithmus beendet.
- Wenn die Anzahl der Elemente in S_i kleiner ist als T, wird ein neuer minimaler Satz aus S gewählt, S_{i+1} bestimmt und der Vorgang wiederholt.
- Wurde nach N Durchläufen der Algorithmus nicht beendet, wird diejenige Menge S_i verwendet, welche die meisten Elemente beinhaltet, um das Berechnungsproblem zu lösen und danach wird RANSAC beendet.

Die Schwellwerte t, T und N sind laut Hartley und Zisserman [1] nach folgendem Schema zu setzen:

Abstandsschwellwert t Dieser Wert entscheidet darüber, ob eine Korrespondenz als passend oder als unpassend hinsichtlich des Modells gewertet wird. Da möglichst viele richtige und keine falschen Korrespondenzen zur Menge S_i hinzugefügt werden sollen, liegt die Schwierigkeit darin, die Größe von t festzulegen. Zu kleine Werte von t weisen unter Umständen zu viele Korrespondenzen ab, zu große Werte erkennen die Ausreißer nicht. Unter der Annahme, dass die Messfehler einer Gauß'schen Verteilung mit Mittelwert 0 und Standardabweichung σ unterliegen, wählen Hartley und Zisserman [1] t mit Hilfe der Chi-Quadrat-Verteilung $F_m(k^2) = \int_0^{k^2} \chi_m^2(\xi) d\xi$ (auf welche hier nicht genauer eingegangen wird) zu

$$t^2 = F_m^{-1}(\alpha)\sigma^2.$$
 (4.27)

Auf diese Weise wird t auf einen Wert gesetzt, so dass mit einer Wahrscheinlichkeit α eine richtige Korrespondenz auch als solche identifiziert wird. Der Parameter m ist abhängig von der Kodimension des Modells zu wählen. Da das verwendete Modell eine Linie ist und der Abstand zu dieser Linie als Kriterium für die Zugehörigkeit zum Consensus Set benutzt wird, ist die Kodimension 1. Für $\alpha = 95\%$ ergibt sich t^2 zu $3,84\sigma^2$.

Rundenzahl N Sei s die minimale Anzahl von Elementen aus S, die benötigt wird, um die Fundamentalmatrix zu erstellen, dann werden ||S|| über s verschiedene Kombinationen gebraucht, um alle aus der Menge S erstellbaren Fundamentalmatritzen anzufertigen. Es ist nicht nötig alle Möglichkeiten auszutesten und im Hinblick auf die Laufzeit auch nicht sinnvoll. Aus diesem Grund geht man den Kompromiss ein, dass es ausreicht, N so groß zu wählen, dass mit einer Wahrscheinlichkeit p angenommen werden kann, dass mindestens eine Kombination nur aus Korrespondenzen besteht, die zur gesuchten Fundamentalmatrix konsistent ist. Sei ϵ die Wahrscheinlichkeit, dass eine ausgewählte Zuordnung zum Modell passt und $\omega = 1 - \epsilon$ die Wahrscheinichkeit, dass sie nicht passt, dann ist die Wahrscheinlichkeit nach N Durchläufen mindestens eine gute erzeugende Menge ausgewählt zu haben

$$(1 - \omega^s)^N = 1 - p. \tag{4.28}$$

Bezogen auf die benötigte Anzahl von Durchläufen ergibt sich N aus p
, ϵ und s wie folgt:

$$N = \log(1-p) / \log(1-(1-\epsilon)^s).$$
(4.29)

Größe T eines zu akzeptierenden Consensus Set Im optimalen Fall soll der Algorithmus abbrechen, wenn alle Korrespondenzen, die keine Ausreißer sind, zum erstellten Modell passen. Da diese aber nicht bekannt sind, reicht es aus, wenn die Anzahl des Consensus Set ähnlich zu der Anzahl der ausreißerfreien Korrespondenzen ist. Hartley und Zisserman benutzen in [1] als Daumenregel für T die Wahrscheinlichkeit, dass eine beliebige Korrespondenz zum Modell passt, multipliziert mit der Anzahl aller Korrespondenzen aus S

$$T = \omega n = (1 - \epsilon)n. \tag{4.30}$$

Adaptive Anpassung der Parameter In den meisten Fällen ist die Wahrscheinlichkeit ϵ für einen Ausreißer nicht bekannt. Da die benötigte Anzahl N an Durchläufen und die Größe T für ein zu akzeptierendes Consensus Set von diesem Wert abhängen, sind sie ebenfalls nicht bekannt. In einem solchen Fall wird ϵ immer auf den niedrigsten zu erwartenden Wert gesetzt. Beim Start ist ϵ gleich 0 und wird bei jedem Durchlauf angepasst. Wenn ϵ kleiner ist als $|S_i| / |S|$ wird ϵ auf diesen neuen Wert gesetzt, da gezeigt wurde,

dass mindestens $|S_i|$ Elemente zum Modell passen. Zur Veranschaulichung sei folgender Algorithmus in Pseudocode gegeben:

- $N = \infty$, zähler = 0;
- While $(N > z\ddot{a}hler)$ repeat
 - Nimm einen minimalen Datensatz zur Erzeugung eines Modells
 - Zähle die Elemente, die zum Modell passen
 - Setze epsilon = 1 (Anzahl der zum Modell passenden Elemente / Anzahl der Elemente der Gesamtmenge)
 - Bilde N aus epsilon mit p = 0.99
 - zähler++
- terminiere

4.6.2 Least Median of Squares

Der Least Median of Squares (LMedS) verhält sich ähnlich wie der RANSAC Algorithmus. Bei beiden Verfahren wird eine Schleife mehrmals durchlaufen, in der jedes Mal aus einem zufällig gewählten, minimalen, erzeugenden Datensatz eine Fundamentalmatrix erstellt und die einzelnen Abstände der Korrespondenzen zu diesem Modell berechnet werden. Als nächstes wird der Median dieser Abstände ermittelt. Dieser Wert wird nun als Schwellwert genommen und die Menge S_i berechnet. Demnach werden immer mindestens 50% der Punktkorrespondenzen als Ausreißer deklariert. Der Durchlauf ist damit beendet und ein neues Modell wird geschätzt. Nach N Durchläufen wird das S_i genommen, dessen Median den geringsten Abstand aufweist. Im letzten Schritt wird die Fundamentalmatrix aus der nun fehlzuordnungsfreien Menge S_i mit einem Standardalgorithmus neu geschätzt. Der Wert N kann der Gleichung 4.29 mit $\epsilon = 0.5$ entnommen werden. Der Vorteil dieses Verfahrens ist, dass der Schwellwert automatisch berechnet wird und somit kein a priori Wissen über die Fehlervarianz vorrausgesetzt wird. Da N zu Beginn des Algorithmus bekannt und die einzelnen Durchläufe autark zueinander ablaufen, können sie auch parallel berechnet werden, was eine Verringerung der Berechnungslaufzeit ermöglicht. Nachteil ist, dass bei Mengen S, die weniger als 50% richtige Zuordnungen aufweisen, dieser Algorithmus unausweichlich Mengen mit Ausreißern ausgibt. In einem solchen Fall kann keine robuste Schätzung abgegeben werden.
Kapitel 5

Merkmalsextraktionsverfahren

In Kapitel 4 wird gezeigt, wie aus Punktkorrespondenzen die relative Orientierung zweier Kameras berechnet werden kann. Dieses Kapitel befasst sich mit verschiedenen Verfahren, um Korrespondenzen aus zwei Bildern zu finden. Dazu ist es nötig Abbildungen von Objekten in einem Bild in einem anderen Bild wieder zu erkennen. Die Abbildung solcher markanter Objekte werden Merkmale genannt.

5.1 SIFT Merkmalerkennung

In dieser Arbeit wird die Scale-Invariant Feature Transform, von Lowe [3] vorgestellt. SIFT zu deutsch Skaleninvariante Merkmalstransformation sucht in einem Bild Schlüsselpunkte, die in anderen Aufnahmen derselben Szene mit hoher Wahrscheinlichkeit wiedergefunden werden. Der Algorithmus betrachtet jedes Pixel als potenzielles Merkmal, sucht sich aber bestimmte Pixel aus, die markante Eigenschaften haben und in anderen Bildern wiedergefunden werden können. Um die Abbildung eines Objektes in einem anderen Bild wiederzufinden, muss es geeignet charakterisiert werden. Lowe benutzt hierzu einen 128-wertigen Vektor (Descriptor), der das Merkmal in Abhängigkeit zu seiner Umgebung beschreibt. Ähnlichkeiten zwischen zwei Merkmalen werden über die euklidische Distanz zwischen den Descriptorvektoren beschrieben. Um Merkmale auch in rotierten Abbildungen wiedererkennen zu können, wird die Orientierung aus der Umgebung des Merkmals berechnet und der Descriptor gegenüber dieser Orientierung beschrieben. Um Invarianz gegenüber der Abbildungsentfernung zu erreichen, werden die Merkmale in verschiedenen Scalenräume gesucht. Die Anzahl und Güte der Merkmale richtet sich nach der beobachteten Struktur der Szene. Monoton einfarbige Flächen ergeben nur wenige Merkmale (siehe Abbildung 5.1), während

strukturreiche Bilder sehr viele Merkmale hervorbringen.

Abbildung 5.1: In monotonfarbenen Flächen können nur wenige Merkmale gefunden werden. Merkmale werden mit einem Pfeil dargestellt, dessen Ursprung die Position, die Richtung die Orientierung und die Länge die Skalierung widerspiegelt.

5.1.1 Merkmalsuche

Digitalkameras haben eine begrenzte Auflösung. Aufnahmen von Objekten können nicht beliebig genau erfasst werden. Aus einer geringen Entfernung werden viele hochfrequente Details abgebildet. Je größer der Abstand zwischen Objekt und Kamera wird, desto besser ist zwar der Gesamtüberblick über das Objekt, doch Details werden immer ungenauer erfasst. Um das abgebildete Objekt aus dem ersten Bild im zweiten Bild wiederzufinden, muss die Detailstufe des ersten Bildes verringert werden und dann nach einem ähnlichen Objekt im zweiten Bild gesucht werden. Diesen Tiefpasseffekt kann man in der Bildverarbeitung durch Faltung mit einer Gaußfunktion $G(x,y,\sigma)$ erreichen. Je größer Sigma gewählt wird, desto größer ist der Grad der Glättung des Bildes.

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-(x^2 + y^2)/2\sigma^2}$$
(5.1)

Der Gauß'sche Skalenraum eines Bildes ist definiert als die Funktion $L(x,y, \sigma)$, die sich aus der Faltung der Gaußfunktion $G(x,y,\sigma)$ mit dem ursprünglichen Bild I(x, y) ergibt

5.1. SIFT MERKMALERKENNUNG

$$L(x, y, \sigma) = G(x, y, \sigma) \otimes I(x, y).$$
(5.2)

Die Operation \otimes entspricht hierbei der Faltung in x und y.

Lowe diskretisiert diesen Skalenraum, indem er nur Werte $L(x,y, \sigma)$ für bestimmte σ in seinem Algorithmus benutzt. Hierdurch entstehen n Kopien des Urbildes, die sich nur durch eine Faltung mit der Gaußfunktion eines bestimmten σ_n voneinander unterscheiden (siehe Abbildung 5.2). σ_n steigt hierbei exponential an. Je größer Sigma wird, desto verschwommener ist die Kopie. Durch diesen Detailverlust sinkt die Informationsdichte und die Größe des Bildes kann reduziert werden ohne Informationen zu verlieren. Dies spart Rechenaufwand ohne das Ergebnis zu beeinflussen. Lowe passt die Größe der Bilder nach jeder Oktave an.

Abbildung 5.2: Die Abbildung zeigt die verschiedenen Bilder des Skalenraumes und wie daraus der Differntial-of-Gauß berechnet werden kann. Abbildung nach [3] entnommen

Mikolajczyk hat in seiner Arbeit [10] durch Experimente gezeigt, dass die Extremwertsuche des normierten Laplacian-of-Gauß die stabilsten Merkmale eines Bildes findet. In seinen Tests verglich er unter anderem den Harris Corner Algorithmus, die Hessesche und Gradienten Funktion. Im folgenden Abschnitt wird gezeigt, wie man den LoG durch eine Differenz von zwei Gaußfunktionen approximieren kann. Die genaue Herleitung kann unter Lowe nachgelesen werden.

$$(G(x, y, \sqrt{2}\sigma) - G(x, y, \sigma)) \approx (\sqrt{2} - 1)\sigma^2 \nabla^2 G$$
(5.3)

Die Faltung eines Bildes mit dem Laplacian-of-Gauß kann damit durch Subtraktion zweier Gaußfaltungen approximiert werden. Aus diesem Grund wird die Funktion Differential-of-Gauß eingeführt.

$$D(x, y, \sigma) = (G(x, y, \sqrt{2}\sigma) - G(x, y, \sigma)) * I(x, y)$$
(5.4)

Um wiedererkennbare Punkte zu finden, werden nun Extremstellen der Funktion 5.3 betrachtet. Hierbei wird jedoch nicht die Funktion selbst, sondern die Funktion 5.4 benutzt. Der Faktor $\sqrt{2}$ -1 aus Gleichung 5.3 spielt bei der Extremwertsuche keine Rolle, da er über alle Werte gleich ist. Deshalb wird er in Gleichung 5.4 vernachlässigt. Um die lokalen Maxima/Minima zu finden wird ein Trippel (x,y,σ) mit allen seinen 26 Nachbarn verglichen (siehe Bild 5.3) Wenn alle Werte kleiner/größer sind, wird dieses Trippel als lokales Maximum/Minimum klassifiziert. Von den potentiellen Merkmalen werden schwach ausgeprägte Extrema herausgefiltert. Das heißt, wenn $||D(x, y, \sigma)||$ unter einen gewissen Schwellwert sinkt, gilt das Merkmal als nicht zuverlässig und wird auf zu geringen Kontrast des Bildes zurückgeführt. Kanten werden mit diesem Verfahren auch als Merkmal erkannt, doch ist die Position des Extremums in Richtung der Kante nur schwer zu bestimmen. Aus diesem Grund muss diese Art von Merkmalen erkannt und aus der Liste genommen werden. Charakteristisch für Kantenpunkte ist, dass sich entlang der Kante $D(x, y, \sigma)$ kaum ändert, jedoch orthogonal dazu die Werte einer sehr starken Anderung unterliegen. Diese Punkte können mit einfachen Kantendetektoren gefunden und aus der Menge der Merkmalspunkte entfernt werden.

Abbildung 5.3: Ein Punkt im Skalenraum gilt als Maximum/Minimum, wenn er größer/kleiner ist als alle seine 26 Nachbarn

Die Berechnung des Differential-of-Gauß hat mehrere Vorteile. Zum einen kann er durch simple Substraktion aus zwei Werten des Skalenraumes berechnet werden, welche ebenfalls für die Berechnung des Deskriptors benötigt werden, zum anderen liefert der DoG eine sehr gute Approximation des normalisierten Laplacian-of-Gauß.

5.1.2 Merkmalsbeschreibung

Im vorherigen Abschnitt wurde erklärt wie Schlüsselpunkte in einem Bild gefunden werden können. Nun wird beschrieben, wie man mit Hilfe von Deskriptoren diese Punkte identifizieren und eine Ähnlichkeit zwischen zwei Schlüsselpunkten berechnen kann.

Orientierung Durch Zuordnung einer aus den Bilddaten berechneten Orientierung an das Merkmal kann der Deskriptor relativ zu dieser Orientierung berechnet werden. Durch dieses Vorgehen wird Invarianz gegenüber der Rotation der Abbildung erreicht. In der Umgebung des Merkmals werden nun die Gradientenorientierungen durch Formel 5.6 bestimmt. σ bezieht sich dabei auf die Skalierung des Merkmals. Mit Hilfe der umliegenden Werte wird ein Histogramm berechnet. Es besteht aus 36 Bins, die die Gradientenorientierung 0° bis 360° abdecken. Jede Orientierung wird gewichtet mit dem entsprechenden Gradient und mit einem Gaußfenster, das über dem Merkmal zentriert ist. Somit erfahren Gradienten im näheren Umfeld eine höhere Gewichtung als Gradienten, die weiter entfernt sind. Das Bin, das den höchsten Wert erreicht, wird als Orientierung des Merkmals definiert.

$$m(x,y) = \sqrt{(L(x+1,y,\sigma) - L(x-1,y,\sigma))^2 + (L(x,y+1,\sigma) - L(x,y-1,\sigma))^2}$$
(5.5)

$$\theta = \tan^{-1}((L(x, y+1, \sigma,) - L(x, y-1, \sigma)))/(L(x+1, y, \sigma) - L(x-1, y, \sigma)))$$
(5.6)

Deskriptoren als Vektor Um den Deskriptor zu berechnen wird das Umfeld des Merkmals in mehrere Regionen unterteilt und in diesen Gebieten separat ein Gradientenhistorgramm erstellt. Zur Verdeutlichung dieses Vorgangs wurde beispielhaft in Abbildung (5.4) das Umfeld des Merkmals in vier Teile unterteilt. Lowe benutzt hierzu 16. Jedes Histogramm besteht aus 8 Bins, die die Gradientenorientierung 0° bis 360° abdecken. Diese Bins konkateniert ergeben den Deskriptor. Der Deskriptor ist demnach ein 128-elementiger Vektor. Um Rotationsinvarianz zu erreichen werden sowohl die Teilgebiete des Histogramms als auch die jeweiligen Gradienten selbst bezüglich der vorher erwähnten Orientierung berechnet. Um den Deskriptor invariant gegenüber einer Kontraständerung zu machen, wird der resultierende Vektor bezüglich seiner Länge normiert. Dies ist möglich, da sich eine Kontraständerung gleichermaßen auf alle Gradienten auswirkt und eine Normalisierung diesem Prozess entgegenwirkt.

Abbildung 5.4: Aus den Regionen des Schlüsselpunktes werden die Gradienten zu Histogrammen zusammengefasst. Der Kreis deutet die Gewichtung in Abhängigkeit der Entfernung an. Diese Abbildung ist Quelle [3] entnommen.

Vergleich von Deskriptoren Die Ähnlichkeit zweier Merkmale ist über die Euklidische Distanz der Deskriptorvektoren definiert. Seien $d = (d_1 \dots d_{128})$ und $d' = (d'_1 \dots d'_{128})$ die Deskriptoren zweier Merkmale, dann ist die Ähnlichkeit definiert als

$$d_{eukl} = \sqrt{\sum_{1}^{128} (d_i - d'_i)^2}.$$
(5.7)

Die Werte für d_{eukl} sind positiv oder gleich 0. Je kleiner dieser Wert ist, desto ähnlicher sind sich die Merkmale. In dieser Arbeit wurde nicht d_{eukl} sondern d_{eukl}^2 als Abstand verwendet, da die notwendigen Eigenschaften erhalten bleiben, jedoch eine aufwendige Wurzeloperation nicht durchgeführt werden muss. Eine alleinige Betrachtung des minimalen Abstandes bei der Korrespondenzbildung würde dazu führen, dass Objekten aus dem Hintergrund immer ein Objekt zugeordnet wird. Damit zwei Merkmale als ähnlich gelten, ist es also ebenfalls nötig einen Schwellwert für die maximale Distanz anzugeben. Jedoch ist es schwierig, einen solchen allgemein gültigen Wert zu finden. Aus diesem Grund geht Lowe einen anderen Weg und betrachtet nicht nur die kleinste, sondern auch die zweitkleinste Distanz. Aus experimentellen Ergebnissen wurde in [3] gezeigt, dass das Verhältnis dieser beiden Abstände ein guter Richtwert für die Ahnlichkeit zweier Deskriptoren ist. Liegen diese Distanzen vom Wert her zu nah beieinander, so wird die Korrespondenz abgewiesen. Abbildung 5.5 zeigt das Ergebnis eines Experimentes, das aus 40000 verschiedenen Merkmalen Korrespondenzen gesucht hat. Ein Schwellwert von 0.7 für das Verhältnis von niedrigster zu zweitniedriegster Distanz lehnt die meisten der falschen Zuordnungen ab und weist nur wenige der richtigen zurück.

Abbildung 5.5: An der x-Achse ist das Verhältnis von kleinster zur zweitkleinsten Distanz aufgetragen und an der y-Achse die relative Dichte der Werte. Abbildung nach [3] entnommen

Abweichend zu Lowe wird in dieser Arbeit eine Doppelprüfung durchgeführt. Sei a_i der Deskriptor des Merkmals M_{1i} aus Bild 1 und $A = \{a_i\}$ die Menge aller Deskriptoren in diesem Bild. Weiterhin sei b_j der Deskriptor des Merkmals M_{2j} im Bild zwei und $B = \{b_j\}$ die Menge aller dieser Deskriptoren. Aus Lowes Forderung geht hervor, dass zwei Merkmale M_{1i} und M_{2j} als ähnlich gelten, wenn gilt: $d(a_i, b_j) = min\{d(a_i, b_k)\}\forall b_k \in B$ und für das Verhältnis $d(a_i, b_j)/min\{\{d(a_i, b_k)\}\setminus\{d(a_i, b_j)\}\} < 0.7$ gilt. Eine Doppelprüfung betrachtet nun auch die Rückrichtung. Erst wenn die Bedingung $d(a_i, b_j) = min\{d(a_k, b_j)\}\forall a_k \in A$ und das Verhältnis von

 $d(a_i, b_j)/min\{\{d(a_k, b_j)\}\} < 0.7$ erfüllt ist, wird eine Korrespondenz als gültig erklärt.

5.2 SURF-Merkmale

5.2.1 Merkmalsuche

Speeded Up Robust Features bzw. SURF [13] benutzt genauso wie der SIFT-Algorithmus den Skalenraum $L(x, y, \sigma)$, um wiedererkennbare Punkte zu finden. Hierbei wird jedoch nicht der LoG zur Extremwertsuche benutzt, sondern die Hessematrix und speziell die Determinante dieser Matrix. Dieser Operator hat den Vorteil, dass er anders als der LoG, unempfindlich gegenüber Kanten ist und nur starke positive/negative Werte bei signifikanten Änderungen der Intensitäten in X- und Y-Richtung liefert. Die Hessematrix,

KAPITEL 5. MERKMALSEXTRAKTIONSVERFAHREN

angewendet auf die Skalenraumfunktion $L(x, y, \sigma)$, ist definiert als

$$H(L) = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} = \begin{pmatrix} \frac{\delta^2 L}{\delta x \delta x} & \frac{\delta^2 L}{\delta x \delta y} \\ \frac{\delta^2 L}{\delta y \delta x} & \frac{\delta^2 L}{\delta y \delta y} \end{pmatrix}$$
(5.8)

Die Hessematrix entspricht der Transponierten der Ableitung des Gradienten, ist aber bei stetigen zweiten Ableitungen wegen der Vertauschbarkeit der Differentiationsreihenfolge (Satz von Schwarz) symmetrisch, daraus folgt $h_{12} = h_{21}$. Hieraus ergibt sich die Determinante zu $det(H(L(x, y, \sigma))) =$ $h_{11}h_{22} - (h_{12})^2$. Nach einer Normierung kann dieser Wert zur Bewertung von Merkmalen hergenommen werden.

$$\det_{norm} \left(H(L(x,y,\sigma)) \right) = \sigma^4 \left(\frac{\delta^2 L(x,y,\sigma)}{\delta x \delta x} \cdot \frac{\delta^2 L(x,y,\sigma)}{\delta y \delta y} - \left(\frac{\delta^2 L(x,y,\sigma)}{\delta x \delta y} \right)^2 \right)$$
(5.9)
$$= \sigma^4 \left(\frac{\delta^2 (G(x,y,\sigma) \otimes I(x,y))}{\delta x \delta x} \cdot \frac{\delta^2 (G(x,y,\sigma) \otimes I(x,y))}{\delta y \delta y} - \left(\frac{\delta^2 (G(x,y,\sigma) \otimes I(x,y))}{\delta x \delta y} \right)^2 \right)$$
(5.10)

Diese Methode ist in der Literatur als Determinant of the Hessian (DoH) bekannt. Da sie auf Gaußfunktionen aufbaut, diese aber sehr rechenintensiv sind, wird eine Approximation der Gaußfunktion angestrebt. Diese Annäherung wird durch sogenannte Boxenfilter (Abbildung 5.6) erreicht. Dabei werden die Intensitäten in der Umgebung des zu betrachtenden Punktes unterschiedlich gewichtet und addiert. Die Gewichtung innerhalb gleich markierter Felder ist gleich.

Abbildung 5.6: Beispiel für die Approximationen für (von links nach rechts) $\frac{\delta^2 G}{\delta x \delta x}(x, y, \sigma)$, $\frac{\delta^2 G}{\delta y \delta y}(x, y, \sigma)$ und $\frac{\delta^2 G}{\delta x \delta y}(x, y, \sigma)$ für $\sigma = 1.2$. Die grauen Bereiche werden mit dem Faktor 0 gewichtet. Diese Abbildung ist Quelle [18] entnommen

Um diesen Filter effizient berechnen zu können,werden in [13] Integralbilder benutzt.

5.2. SURF-MERKMALE

Das Integralbild I_{Σ} eines Intensitätsbildes I ist definiert als $I_{\Sigma}(x, y) = \sum_{i=0}^{x} \sum_{j=0}^{y} I(i, j)$. Dies ermöglichen die Berechnung von Summen über rechteckige Bereiche beliebiger Größe in I mit nur vier Additionen. Für ein Rechteck mit linker oberer Ecke (l, o) und rechter unterer Ecke (r, u) gilt

$$\sum_{i=r}^{l} \sum_{j=u}^{o} I(i,j) = I_{\Sigma}(r,o) - I_{\Sigma}(r,u) - I_{\Sigma}(l,o) + I_{\Sigma}(l,u)$$
(5.11)

Lowe hat gezeigt wie der LoG approximiert werden kann. In [13] wird noch einen Schritt weiter gegangen und die zweite Ableitung der Gaußfunktion durch Boxfilter approximiert (Abb. 5.6). Der Wert dieser Felder kann mit Hilfe der Integralbilder durch vier Additionen schnell berechnet werden und das unabhängig von der Größe des Filters. Die Determinante der so erlangten Hessematrix wird benutzt um die Wiedererkennbarkeit des Merkmals zubewerten. Bei der SURF-Merkmalsextraktion handelt es sich also um eine Approximation der DoH-Methode. Die Autoren bezeichnen dieses Verfahren als Fast-Hessian.

Da die Anwendung des Filters unabhängig von der Skalierung in konstanter Zeit verläuft, ist es nicht nötig, das Bild nach jeder Oktave von σ stufenweise zu verkleinern. Die Pyramidenstruktur wie bei SIFT, ist nicht notwendig zur Berechnung der einzelnen Skalierungsstufen. Entsprechend der DoH-Methode werden Extrema bzgl. der normalisierten Determinante als Merkmale extrahiert. Mittels Interpolationsmethoden werden danach deren Positionen in Bild und Skalierungsraum noch genauer bestimmt.

5.2.2 Merkmalsbeschreibung

Um das Merkmal rotations- und skalierungsinvariant zu beschreiben, arbeitet SURF[13] wie SIFT mit Deskriptorvektoren, die die Umgebung des Merkmals im Bild beschreiben. Hierzu wird ein quadratischer Bereich in Abhängigkeit einer zuvor berechneten Orientierung des Merkmals um das Merkmalszentrum ausgewählt. Durch dieses Vorgehen wird Rotationsunabhängigkeit erreicht. Die Größe dieses Gebiets ist abhängig von der jeweiligen Skalierung, wodurch die Invarianz gegenüber der Skalierung erreicht wird. Das ausgewählte Quadrat wird in 4 x 4 gleich große Regionen aufgeteilt.

Für diese Regionen werden jeweils 5 x 5 einfache Merkmale gesucht und die approximierten Gradienten in X- und Y-Richtung hierzu berechnet. Die Abschätzung dieser Gradienten erfolgt jeweils durch die Subtraktion der Intensitätssummen zweier angrenzender Rechtecke. Die berechneten Gradienten werden nun anhand einer Gaußverteilung gewichtet. Diese gewichteten Gradienten seien $dx_1, ..., dx_{25}$, bzw. $dy_1, ..., dy_{25}$. Im nächsten Schritt werden diese Werte zu einem 4-dimensionalen Vektor v zusammengetragen

$$v = (\sum dx_i \sum dy_i \sum ||dx_i|| \sum ||dy_i||)^T$$
(5.12)

Für jedes der $4 \ge 4$ Quadrate werden nun die entsprechenden Vektoren \mathbf{v} berechnet. Daraus ergibt sich ein 64-elementiger Deskriptor.

Eine Veränderung der auf das Bild einwirkenden Lichtmenge würde alle Werte um einen konstanten Wert erhöhen (Bias). Da die Elemente des Vektors aus Gradienten bestehen, ist er robust gegenüber einer Veränderung eines solchen Bias-Wertes. Durch eine anschließende Normalisierung der Vektorlänge wird eine Invarianz gegenüber einer Kontrastveränderung erreicht.

Nach [13] ist die Wiedererkennungsrate bei SURF mit SIFT vergleichbar, die Extraktion der Merkmale ist jedoch weniger rechenaufwendig. Durch den nur 64-elementigen Deskriptorvektor ist außerdem der Aufwand zum Vergleichen zweier Merkmale geringer als für die 128-elementigen SIFT-Deskriptoren.

Die Ähnlichkeit zweier Merkmale ist über die euklidische Distanz der Deskriptorvektoren definiert. Die Berechnung erfolgt analog zur Ähnlichkeit von SIFT-Merkmalen, wobei auch hier nicht nur der minimale Abstand betrachtet wird, sondern das Verhältnis vom kleinsten zum zweitkleinsten Abstand den Wert 0,7 nicht überschreiten darf.

Kapitel 6

Konzept

In den vorherigen Kapiteln wurden die Grundlagen erklärt, die nötig sind, um aus Bilddaten die relative Orientierung zu berechnen. Nun gilt es hieraus ein Konzept für ein Verfahren zu entwickeln, das aus Bilddaten die relative Orientierung zweier Kameras berechnet. Dabei wird darauf geachtet, dass dieses Verfahren eine Struktur aufweist, die durch Modularität ein breites Aufgabenspektrum abdeckt. Dies wird durch Aufteilung des Gesamtproblems in Teilaufgaben mit definierten Schnittstellen erreicht. Jede Teilaufgabe kann durch ein an die Aufgabe angepasstes Verfahren gelöst werden, solange die Schnittstellen eingehalten werden.

Aus dem Gesamtproblem lassen sich die Teilaufgaben zur Berechnung der Korrespondenzen und zur Berechnung der Orientierung ableiten. Um die geschätzten Lösungen auf Genauigkeit zu prüfen, wird eine weitere Teilaufgabe hinzugefügt, die einen Vergleich zwischen den berechneten Orientierungen und den Referenzdaten ermöglicht. Dieses Problem wird im Folgenden Bewertung genannt. Abbildung 6.1 zeigt die Einteilung des Gesamtproblems in Teilaufgaben. Datentypen sind durch ovale Umrundung gekennzeichnet und Arbeitsschritte bzw. Module durch rechteckige Umrundung. Eine Korrespondenz besteht aus den Bildkoordinaten der korrespondierenden Punkte in den jeweiligen Bildern. Eine Fundamentalmatrix ist hierbei eine 3×3 Matrix. Orientierungen werden durch eine Rotation und eine Translationsrichtung angegeben.

6.1 Korrespondenzbildung

Das Auffinden von Korrespondenzen ist eine sehr umfangreiche Problematik. Die Lösung ist abhängig von dem Wissen über die abzubildende Szene, Kamera, den Lichtverhältnissen etc. Zwei mögliche Verfahren, nämlich SIFT-

Abbildung 6.1: Struktureinteilung des Gesamtproblems inklusive Bewertung des berechneten Ergebnisses anhand von Referenzdaten

Feature und SURF-Feature wurden in Kapitel 5 beschrieben. Somit ist die Lösung dieses Problems als bekannt anzusehen.

6.2 Berechnung der Orientierung

Der Schwerpunkt dieser Arbeit liegt auf dem Verfahren zur Berechnung der relativen Orientierung (siehe Abb. 6.2). Ausgehend von Punktkorrespondenzen wird eine Aussage über die relative Kamerastellung getroffen. Da nicht von perfekten Zuordnungen ausgegangen wird, muss zuerst eine robuste Schätzung der Fundamentalmatrix, gefolgt von einer Optimierung, stattfinden. Aus diesem Ergebnis wird dann durch Faktorisierung die relative Orientierung berechnet.

6.2.1 Robuste Schätzung

Die robuste Schätzung berechnet aus einer mit Ausreißern behafteten Korrespondenzmenge eine Fundamentalmatrix und die dazugehörige Menge aus korrekten Zuordnungen. Dieses Verfahren beinhaltet einen Algorithmus, um die Fundamentalmatrix aus einer Minimalmenge zu erzeugen und einen Algorithmus, der aus der Menge der gesamten Zuordnungen eine Minimalmenge

Abbildung 6.2: Einzelne Schritte der Berechnung der Orientierung

auswählt. Beispiele für robuste Schätzverfahren sind die in Kapitel 4.6 vorgestellten Verfahren RANSAC und LMedS. Abbildung 6.3 gibt einen Überblick über diese Struktur.

6.2.1.1 Fundamentalmatrixerzeugung

Hier wird aus einer minimalen erzeugenden Menge von Korrespondenzen eine Fundamentalmatrix erstellt. Die Größe der Menge ist abhängig vom verwendeten Algorithmus. Diese Thematik wurde in Kapitel 4.2 anhand des 8-Punkte-Algorithmus und des 7-Punkte-Algorithmus behandelt.

6.2.1.2 Beispielmengenbildung

Um die Minimalmenge auszuwählen müssen Elemente aus der Gesamtkorrespondenzmenge ausgewählt werden. Dies kann durch eine gleiche Gewichtung aller Zuordnungen geschehen. Der hier verwendete Ansatz benutzt eine räumliche Einteilung der Korrespondenzen in einzelne Felder. Jede Zuordnung wird einem Feld zugewiesen und das Feld, aus dem die Korrespondenz gezogen wird, per Zufall gewählt. Wenn die Elemente der Minimalmenge aus unterschiedlichen Feldern gewählt werden, wird eine große räumliche Streuung erreicht. Grundsätzlich sind aber noch andere Verfahren möglich, die aufgrund von zusätzlichem Wissen über die Korrespondenzen, eine bessere Auswahl ermöglichen.

Abbildung 6.3: Einzelne Schritte der robusten Schätzung

6.2.2 Optimierung

Hier wird davon ausgegangen, dass die zu Grunde liegende Korrespondenzmenge ausreißerfrei ist und die Daten nur durch Rauschen von idealen Daten abweichen. Mit einer Kostenfunktion wird der Abstand der Korrespondenzen zur Fundamentalmatrix berechnet. Um die zutreffendste Fundamentalmatrix zu berechnen, muss die Summe der Abstände minimiert werden. Beispiele für Kostenfunktionen wurden in Kapitel 4.5 behandelt. In dieser Arbeit wird der Sampson-Fehler benutzt, da er eine gute Annäherung an den Rückprojektionsfehler liefert, jedoch eine von der Korrespondenzmenge unabhängige Parameteranzahl zu optimieren ist. Um die Fundamentalmatrix hinsichtlich der Kostenfunktion zu optimieren, wurde der Levenberg-Maquardt-Algorithmus benutzt.

6.2.3 Faktorisierung

In dieser Teilaufgabe müssen die Orientierungsparameter aus der Fundamentalmatrix berechnet werden. Aus der Eingabe wird mit Hilfe der Kamerakalibrierungsmatrix die Essentielle Matrix bestimmt. Wie in Kapitel 4.3 gezeigt,

44

ergeben sich aus dieser Matrix vier mögliche Faktorisierungen, die mit Hilfe der als korrekt klassifizierten Korrespondenzen bewertet werden müssen. Aus der Faktorisierung, die mit Hilfe des Sichtbarkeitstests die Korrespondenzen am besten einordnet, werden die gesuchten Orientierungsparameter, die Rotationsmatrix R und die Translationsrichtung t, berechnet und als Lösung ausgegeben.

6.3 Bewertung

Diesem Modul stehen die Soll-Orientierung und die berechnete Orientierung zur Verfügung. Diese bestehen aus einer Rotationsmatrix R_s bzw. R_b und einer Translationsrichtung t_s bzw. t_b . Um die Abweichung der Rotation anzugeben, wird die Rotationsmatrix R_a berechnet, die nötig ist, um R_b in R_s zu überführen. Für die Matrix R_a gilt $R_a = R_s \cdot R_b^T$. Nun wird der Drehwinkel aus R_a berechnet und dieser als Abweichung zur Soll-Orientierung gewertet. Der Winkel zwischen t_s und t_b beschreibt die Abweichung zur Soll-Translationsrichtung.

Kapitel 7

Software

Im folgenden Kapitel wird gezeigt, auf welche Art das in Kapitel 6 vorgestellte Konzept umgesetzt wird. Die dargestellten Teilaufgaben werden hierbei teils durch eigenen Code und teils durch fremden Code gelöst.

7.1 Verwendete Bibliotheken

Der Schwerpunkt dieser Arbeit liegt auf der Orientierungsbestimmung aus Punktkorrespondenzen. Da aber in dieser Arbeit der Bezug zur Praxis nicht vernachlässigt werden soll, werden die Funktionen zur Merkmalsextraktion externen Bibliotheken entnommen. Das Verfahren SIFT von David G. Lowe steht unter Lizenzpflicht, ist jedoch für wissenschaftliche, nicht kommerzielle Zwecke freigegeben. Der Programmcode zur SIFT-Bestimmung wurde der Quelle [14] entnommen. Er wurde an der amerikanischen Universität von Oregon entwickelt und steht unter der General Public Licens(GPL). Der Code von [14] wurde ohne Anderung kompiliert und das daraus entstandene Programm außerhalb des in dieser Arbeit entwickelten Programmcodes verwendet. Der Programmcode zum SURF Algorithmus wurde von der Eidgenössischen Technischen Hochschule Zürich [15] übernommen und auch als eigenständiges Programm genutzt. Um an die Arbeit des Fachgebiets anzuknüpfen und die vorhandenen Ressourcen zu nutzen, wird die Implementierung des Levenberg-Marquardt-Algorithmus der Arbeit von A. Klemp [5] entnommen. Bei aufkommenden Fragen sei auf die angegebene Quelle verwiesen.

7.2 Implementierung des Konzeptes

Die Implementierung erfolgte in der Sprache C++ mittels der Entwicklungsumgebung Visual Studio 2005. Unter Berücksichtigung des Konzeptes aus Abbildung 6.1 werden die Teilaufgaben Korrespondenzbestimmung, Berechnung der Orientierung und Bewertung des Ergebnisses als eigenständige Module, basierend auf das am Fachgebiet entwickelten Framework RoboFrame [6], implementiert. In diesem Framework werden Module durch Definition von Ein-/Ausgabepuffern und einer Hauptroutine festgelegt. Die Verknüpfung von zwei Modulen erfolgt durch die Verknüpfung der jeweiligen Ein-/Ausgabepuffer.

Die Einteilung der Teilprobleme in Module hat den Vorteil, dass einzelne Programmteile einfach auszutauschen sind, ohne dass die anderen Module in ihrer Funktion beeinflusst werden. Auf diese Weise kann das Modul zur Orientierungsbestimmung mit synthetisch erzeugten Korrespondenzen getestet werden und danach unter gleicher Funktionsweise mit realen Daten.

Korrespondenz können mit den Klassen SyntheticDataGeneratorModule, FeatureReaderModule oder MatchReaderModule erzeugt werden. Diese Klassen erben von der Klasse Module des RoboFrame Frameworks. Die Module besitzen zwei Ausgabepuffer. Dem einen wird die Orientierung übergeben, die aus Referenzdaten gewonnen wurde, in den anderen die erzeugten Korrespondenzen. Als Eingabe der Module gibt es einen Puffer, der Orientierungen akzeptiert und mit der Ausgabe des Moduls zur Berechnung der Orientierung verbunden ist. Ist eine neue Orientierung in diesem Puffer angekommen, wird das als Signal interpretiert neue Korrespondenzen zu erzeugen. Auf diese Weise ist zum einen ein kontinuierlicher Ablauf sichergestellt und zum anderen werden erst neue Korrespondenzen dem Ausgabepuffer übergeben, wenn das nachfolgende Modul bereit ist, neue Werte zu empfangen.

Das Modul SyntheticDataGeneratorModule erzeugt die Korrespondenzen aus synthetischen Daten. Hierbei werden die Positionen der abzubildenden Objekte in Weltkoordinaten aus einer Datei eingelesen. Die Klasse Camera berechnet aus diesen Objekten die Abbildung. Um dies zu tun, wird ihr die 4 × 4 Transformationsmatrix übergeben, die den Zusammenhang zwischen dem Weltkoordinatensystem und dem Kamerakoordinatensystem beschreibt. Änderungen der Kameraposition werden durch Multiplizieren mit einer anderen Transformationsmatrix erreicht. Der Vorteil dieser Vorgehensweise ist, das die relative Orientierung zwischen zwei Kameraaufnahmen der hinzumultiplizierten Transformationsmatrix entnommen werden kann. Die notwendigen Daten hierfür werden aus einer Datei eingelesen. Um die Bedeutung der Transformationsdaten besser zu verstehen, werden in dieser Datei die Rotationsachse, der Rotationswinkel und der Translationsvektor angegeben und daraus die Transformationsmatrix berechnet. Die eingelesenen Werte werden als Referenzdaten in dem zweiten Ausgabepuffer übergeben. Weiterhin werden die erzeugten Abbildungen genutzt, um aus Abbildung vorheriger Durchläufe Korrespondenzen zu erzeugen, welche in den anderen Ausgabepuffer gegeben werden. Das Modul FeatureReaderModule liest die mit SIFT bzw. SURF erzeugten Merkmale aus einer Datei ein und berechnet hieraus Korrespondenzen, während MatchReaderModule direkt die Daten der Korrespondenzen aus einer Datei erhält und in den Ausgabepuffer gibt.

Das Modul PoseComputationModule erzeugt aus Korrespondenzen eine Orientierung. Die Teilaufgaben bestehen aus der robusten Schätzung, der Optimierung der Fundamentalmatrix und der Faktorisierung der Essentiellen Matrix. Hierbei gilt es zu beachten, dass die Aufgaben durch verschiedenen Verfahren gelöst werden können. Unter Verwendung des Software-Engineering-Design-Patterns Template-Methode (zu Deutsch Schablonenmuster) wird gewährleistet, dass das Modul die entsprechenden Funktionen ausführen kann, jedoch die Umsetzung von anderen Klassen abhängt und somit nicht variabel gehalten wird. Die Teilaufgaben sind miteinander verkettet, denn wie aus Abbildung 6.2 hervorgeht, ist das Ergebnis der einen Funktion die Eingabe der anderen.

Die Teilaufgabe der robusten Schätzung wird durch die abstrakte Klasse RobustEstimation gelöst. Ihr werden eine Menge von Korrespondenzen übergeben und sie berechnet die Elemente, die im Consensus Set liegen und das entsprechende Modell in Form einer 3×3 Fundamentalmatrix. Die Art des Verfahrens zur Fundamentalmatrixerzeugung ist auch hier durch das Pattern Template-Method variabel gehalten. Die nötige abstrakte Klasse wird hierbei durch FMatrixComputation gewährleistet.

RobustEstimation besitzt ein Objekt der Klasse Sampler, das aus einer übergebenen Menge von Korrespondenzen Teilmengen in beliebiger Größe erzeugt. Hierbei geht diese Klasse auf zwei unterschiedliche Weisen vor. Es können die Korrespondenzen in Felder eingeteilt werden und per Zufall Felder gewählt werden, aus denen ein Element zur gesuchten Teilmenge hinzugefügt wird. Unter Beachtung, dass aus jedem Feld nur eine Korrespondenz ausgewählt wird, ist eine gewisse Streuung der Daten über das ganze Bild erreicht. Schwierigkeiten gibt es jedoch, wenn aus kleinen Mengen eine Teilmenge bestimmt werden soll, da bei schlechter Verteilung der Werte kein Ergebnis gefunden werden kann. Um dies zu umgehen, wird auf die Bedingung der Streuung verzichtet, wenn die Anzahl a der Elemente der Ursprungsmenge klein gegenüber der Anzahl b der Elemente der zu erzeugenden Menge ist. Ist das Ergebnis von a/b kleiner als ein gewisser Schwellwert t, so wird auf die Bedingung der Streuung verzichtet und die Elemente per Zufall ausgewählt. Aus experimenteller Erprobung ergab sich t = 1, 5 als ein guter Schwellwert.

Die Klassen LeastMeanSquares und Ransac erben von der Klasse RobustEstimation und bilden die Implementierung der gleichnamigen Verfahren wie sie in Kapitel 4.6 beschrieben werden.

Von der Klasse FMatrixComputation erben SevenPointAlgorithm, EightPointAlgorithm und LevenbergMarquardtAlgorithmus. Auch hier geben die Namen der Klassen Aufschluss über die verwendeten Verfahren. Diese Klassen erben alle von der gleichen, da sie alle dem Zweck dienen, eine Fundamentalmatrix zu berechnen. Sie erzeugen aus der übergebenen Menge aller Korrespondenzen, einer minimalen, erzeugenden Menge und einer Startfundamentalmatrix eine Schätzung der Fundamentalmatrix. Obwohl der 7-PA und der 8-PA keine Startfundamentalmatrix benötigen, ist es sinnvoll, diese Schnittstelle zu wählen, denn der Levenberg-Marquardt-Algorithmus kann durch geeignete Wahl einer Startmatrix die Fundamentalmatrix durch wesentlich weniger Iterationen schätzen. Die Klasse LevenbergMarquardt-Algorithmus wird hierbei nicht zur Erzeugung einer Fundamentalmatrix genutzt, sondern zur Optimierung, da der LM-Algorithmus nur mit ausreißerfreien Korrespondenzen eine gute Lösung erzielen kann.

Besondere Beachtung soll die Lösung der Teilaufgabe zur Faktorisierung der Essentiellen Matrix finden. Hierbei wird ein Verfahren zur Selbstkontrolle des Algorithmus eingesetzt, das in dieser Arbeit entwickelt wurde. Wie in Kapitel 4.3 beschrieben, ergeben sich aus der Essentiellen Matrix vier verschiedene Faktorisierungen. Aus diesen Faktorisierung können vier mögliche relative Kameraorientierungen abgeleitet werden. Nur bei einer dieser vier liegt der rückprojizierte Urbildpunkt einer Korrespondenz im Sichtfeld beider Kameras (siehe Abb. 4.2). Nun wird diese Prüfung nicht anhand einer Korrespondenz durchgeführt, sondern mit allen als ausreißerfrei deklarierten Korrespondenzen. Auf diese Weise wird eine Abstimmung durchgeführt, welche Faktorisierung die richtige ist. Nur eine Lösung, die mit mindestens 70 % der Korrespondenzen konsistent ist, wird als gültiges Ergebnis gewertet. Wird eine ungültige Lösung erkannt, wird die auszugebende Orientierung auf eine Rotation um 180° gesetzt und damit als fehlerhaft markiert. Dieses Vorgehen macht die Erkennung von groben Fehlberechnungen möglich, ist jedoch kein Garant dafür, dass jedes Ergebnis frei von groben Fehlern ist.

7.2. IMPLEMENTIERUNG DES KONZEPTES

Das Modul CompareModule kapselt die Teilaufgabe der Bewertung. Es erhält sowohl die Refernzorientierung als auch die berechnete Orientierung. Hieraus wird die Abweichung berechnet, wobei Rotation und Translation getrennt voneinander betrachtet werden und somit zwei Winkelfehler angegeben werden können.

Kapitel 8

Experimentelle Erprobung

In diesem Kapitel werden die vorgestellten Verfahren experimentell erprobt und evaluiert. Nachdem auf die verwendete Hardware eingegangen wird, unterteilen sich die Experimente in verschiedene Bereiche. Zuerst werden nur die Merkmalsextraktionsverfahren betrachtet und Unterschiede in den auftretenden Laufzeiten beleuchtet. Nachfolgend werden die Verfahren untersucht, die zur Orientierungsbestimmung aus Korrespondenzdaten dienen, wobei Korrespondenzen synthetisch berechnet werden. Danach werden die Module zur Korrespondenzbestimmung und zur Berechnung der Orientierung zusammengefügt und anhand von realen Bilddaten getestet. Hierbei werden 20 Fotografien aufgenommen und die Orientierung bezüglich eines Gesamtsystems gemessen. Aus diesen Aufnahmen werden $20 \cdot 20$ Bildpaare bestimmt, wovon die relative Orientierung zu ermitteln ist. Im letzten Abschnitt werden die Ergebnisse der Versuche zusammengetragen und eine allgemeine Bewertung abgegeben.

8.1 Verwendete Hardware

Für die nachfolgenden Experimente wurde eine CANON X70 Digitalkamera benutzt mit der Auflösung 640 x 480 Pixel. Um die gemessenen Daten auf ein Weltkoordinatensystem beziehen zu können, muss die Kamerakalibrierungsmatrix K bekannt sein. Diese wurde mit Hilfe der Software "camera calibration toolbox" für Matlab [16] experimentell aus 16 Bildern bestimmt.

$$K = \begin{pmatrix} 670.925 & 0 & 319.189 \\ 0 & 663.539 & 236.896 \\ 0 & 0 & 1 \end{pmatrix}$$
(8.1)

Alle Experimente wurden auf einem Intel Centrino 1,4 GHz mit 1 GByte

Teilschritte	Laufzeit Durchschnitt [ms]
Bilderfassung (Offline)	0
Erzeugung der Gaußpyramide	680
Erzeugung des DoG	105
Extremwertsuche	300
Berechnung der Orientierung	416(0,208)
Berechnung des Deskriptors	2180(1,092)
Gesamt	3681

Tabelle 8.1: Ergebnisse der Laufzeitanalyse des SIFT-Algorithmus. Die Einträge sind Durchschnittswerte aus 10 Berechnungen und beziehen sich auf die Merkmalsbestimmung aus einem Bild. In Klammern wird der Wert pro Merkmal angegeben.

Arbeitsspeicher und dem Betriebssystem Windows XP Service Pack 2 durchgeführt.

8.2 Merkmalserkennung mit SIFT und SURF

Die Bestimmung von Merkmalen setzt eine gewisse Struktur der abzubildenden Szene voraus. Ist diese nicht gegeben, können keine Merkmale gefunden werden. Gleichfarbige Flächen, wie sie zum Beispiel beim Spielfeld des Robocup vorkommen, führen dazu, dass keine Punkte gefunden werden können. Als Beispiel sei hier Abbildung 5.1 genannt. Der SIFT-Algorithmus erkennt hier nur 509 Merkmale und der SURF-Algorithmus nur 244, wobei der Großteil nicht vom Spielfeld herrührt, sondern aus der Umgebung des Spielfelds.

8.2.1 Laufzeit der Merkmalsextraktion

SIFT Um die Laufzeit des SIFT-Algorithmus zu bewerten, werden die Bilder aus dem Experiment Kapitel 8.4 zur Analyse herangezogen und die Ergebnisse aus zehn Bildpaaren zusammengetragen. Die Durchschnittswerte können der nachfolgenden Tabelle 8.1 entnommen werden. Die Teile "Berechnung der Orientierung" und "Berechnung des Deskriptors" sind abhängig von der Anzahl der entdeckten Merkmale. Die durchschnittliche Anzahl von erkannten Merkmalen beträgt 1778,3. Da die Laufzeit im Bereich von Berechnung der Orientierung und des Deskriptors von dieser Anzahl abhängt, wurde in Klammern die durchschnittliche Laufzeit pro Merkmal hinzugefügt.

8.3. ORIENTIERUNGSBESTIMMUNG AUS SYNTHETISCHEN DATEN55

Teilschritte	Laufzeit Durchschnitt [ms]
Bilderfassung (Offline)	0
Erzeugung der Gaußpyramide	10
Extremwertsuche	56
Berechnung der Orientierung und	
des Deskriptors	252(0,483)
Gesamt	318

Tabelle 8.2: Ergebnisse der Laufzeitanalyse des SURF-Algorithmus. Die Einträge sind Durchschnittswerte aus 10 Berechnungen und beziehen sich auf die Merkmalsbestimmung aus einem Bild. In Klammern wird der Wert pro Merkmal angegeben.

SURF Zur Untersuchung werden die gleichen Bilder verwendet wie bei der Analyse des SIFT-Verfahrens. Durchschnittlich wurden bei diesen Bildern 522,5 Merkmale gefunden. Die mittlere Laufzeit zur Berechnung der Orientierung und des Deskriptors pro Merkmal wurde auch hier in Klammern angegeben.

8.2.2 Laufzeit der Korrespondenzsuche

Bei der Bestimmung von Korrespondenzen wird, wie im Kapitel 5 beschrieben, zu einem gegebenen Merkmal ein ähnliches gesucht. Hierbei wird der Abstand zwischen jedem Deskriptor im ersten Bild und jedem Deskriptor im zweiten Bild bestimmt. Das Verhältnis vom kleinsten zum zweitkleinsten Abstand entscheidet über die Akzeptanz einer Korrespondenz. Bei diesem Vorgang müssen bei n Merkmalen im ersten Bild und m Merkmalen im zweiten Bild n \cdot m Abstände berechnet werden. Da der Deskriptor eines SURF-Merkmals nur 64 Elemente hat, ist eine solche Distanz schneller berechnet als zwischen Deskriptoren eines SIFT-Merkmales mit 128 Elementen. Ein weiterer Vorteil im Hinblick auf die Laufzeit ergibt sich aus der geringeren Anzahl an gefundenen Merkmalen im Bild. Die Ergebnisse können Tabelle 8.3 entnommen werden.

8.3 Orientierungsbestimmung aus synthetischen Daten

In diesem Kapitel werden die Algorithmen RANSAC, LMedS, 7-Punkte-Algorithmus(7-PA) und 8-Punkte-Algorithmus(8-PA) anhand von syntheti-

Algorithmus	Ø Anzahl Merkmale	ØAnzahl	\emptyset Zeit [ms]
	pro Bild [ms]	Korrespondenzen [ms]	
SIFT	1725	67	4429
SURF	507	25	207

 Tabelle 8.3: Der direkte Vergleich der Verfahren SIFT und SURF

schen Merkmalen getestet. Hierbei werden die Verfahren erst mit idealen Daten bzw. mit Daten ohne Fehlerquellen erprobt. Im zweiten Schritt wird die Position des Merkmals durch eine diskrete Abtastung beeinflusst und die Eigenschaften der Verfahren ohne Optimierung getestet. Im dritten Schritt wird die Optimierung der Fundamentalmatrix im Anschluss an die robuste Schätzung durchgeführt.

8.3.1 Ideale Merkmale

Bei diesem Test werden Punkte aus einer Datei eingelesen und nach Gleichung 3.18 transformiert. Die dazugehörigen Parameter bestehend aus dem Drehvektor, dem Drehwinkel und dem Translationsvektor werden ebenfalls über eine Datei eingelesen. Diese Werte beschreiben die Transformation der Projektionsmatrix von einem Bild zum nächsten und bilden somit die Referenzdaten, die zu schätzen sind (siehe 7.2 SyntheticDataGeneratorModule). Die verwendeten Daten sind in Tabelle 8.4 zusammengestellt, wobei die Werte zufällig ausgewählt wurden. Eine optionale Optimierung erfordert minimal acht Korrespondenzen. da bei dem robusten Schätzverfahren LMedS die Hälfte dieser Korrespondenzen als Ausreißer deklariert werden, wurde die Anzahl der Punkte auf gesetzt 16. Die Anzahl von Transformationen ist zufällig bestimmt.

Ein Durchgang besteht darin die Punkte zu transformieren und die Abbildung mit Hilfe der Kameramatrix vorzunehmen. Aus den abgebildeten Punkten des vorherigen Durchgangs werden Korrespondenzen bestimmt. Die gefundenen Zuordnungen werden dem Modul zur Berechnung der Orientierung übergeben. Die durchgeführte Transformation der Punkte wird in das Ergebnismodul übertragen. Die berechnete Orientierung wird ebenfalls an das Ergebnismodul weitergeleitet. Da die berechneten Positionen der Korrespondenzen in 32-Bit Fließkommazahlen gespeichert werden und keine weitere Rundung vorgenommen wird, werden die Daten als ideal angenommen, also ohne Rauschen und ohne Ausreißer. Es werden die Kombinationen RANSAC/7-Punkte-Algorithmus, RANSAC/8-Punkte-Algorithmus,

8.3. ORIENTIERUNGSBESTIMMUNG AUS SYNTHETISCHEN DATEN57

LMedS/8-PA LMedS/7-PA getestet. Die Ergebnisse ergaben bei allen verwendeten Verfahren einen Fehler im Bereich von 10^{-5} Grad für den berechneten Drehwinkel und den Translationsvektor. Durch dieses Experiment wird die Korrektheit der implementierten Verfahren gezeigt. Im nächsten Schritt soll getestet werden, wie die Verfahren auf Rauschen reagieren.

Pun	lkte	Translationsparameter				
a)	$(2 \ 2 \ 9)^T$	1)	$(0 \ 0 \ 1)^T$	0,0000	$(0 \ 0 \ 0)^T$	
b)	$(0\ 1\ 6)^T$	2)	$(0 \ 0 \ 1)^T$	0,0000	$(0, 5 \ 0 \ 0)^T$	
c)	$(0 \ 2 \ 7)^T$	3)	$(0 \ 0 \ 1)^T$	0,0000	$(0 \ 0 \ -0, 5)^T$	
d)	$(1 - 3 \ 10)^T$	4)	$(1 \ 0 \ 0)^T$	$0,\!1570$	$(0 \ 0 \ 0)^T$	
e)	$(1 - 1 \ 15)^T$	5)	$(0 \ 1 \ -1)^T$	$0,\!1570$	$(0 \ 0 \ 3)^T$	
f)	$(1 - 2 \ 11)^T$	6)	$(1 \ 0 \ 0)^T$	0,1570	$(0, 5 \ 0 \ 0)^T$	
g)	$(-2\ 1\ 10)^T$	7)	$(-1 \ 0 \ 0)^T$	$0,\!1570$	$(0, 5 \ 0 \ 2)^T$	
h)	$(-2 \ -1 \ 6)^T$	8)	$(0 \ 1 \ 0)^T$	0,1570	$(0\ 2, 1\ -1, 1)^T$	
i)	$(2 \ 3 \ 9)^T$	9)	$(0 - 1 \ 0)^T$	0,1870	$(1, 1 \ 3 \ 0)^T$	
j)	$(3\ 1\ 6)^T$	10)	$(0 \ 1 \ 0)^T$	0,3570	$(0, 1 \ 0 \ 0)^T$	
k)	$(1 - 2 7)^T$	11)	$(0 \ 0 \ 1)^T$	0,5570	$(0, 5 \ 0, 2 \ 0)^T$	
1)	$v1 - 2 6)^T$	12)	$(0 \ 0 \ -1)^T$	$0,\!0570$	$(1, 1 \ 0 \ -0, 9)^T$	
m)	$(2 - 2 \ 15)^T$	13)	$(2 \ 0 \ -1)^T$	0,2570	$(2, 1 \ 0 \ 0)^T$	
n)	$(1 - 3 9)^T$	14)	$(1 \ 0 \ 2)^T$	0,1140	$(-1, 1 \ 0 \ -2, 3)^T$	
o)	$(-2 \ -1 \ 10)^T$	15)	$(1 - 3 \ 1)^T$	0,1540	$(-1 - 2 - 0, 5)^T$	
p)	$(-2 \ 3 \ 6)^T$	16)	$(1 \ 3 \ -2)^T$	0,0140	$(1, 1 \ 0 \ 0)^T$	

Tabelle 8.4: In der linken Tabelle sind die 16 zu transformierenden Punkte zu sehen. Rechts können die Parameter Drehvektor, Drehwinkel und Translationsvektor betrachtet werden.

8.3.2 Simulation einer optimalen Kamera

Das nächste Experiment verwendet ebenfalls das Testverfahren aus 8.3 mit den entsprechenden Werten für die zu behandelnden Punkte und dieselben Transformationsparameter. Der Unterschied liegt nun darin, dass die Bildkoordinaten auf ganze Zahlen gerundet werden. Dies soll den Effekt simulieren, der bei der diskreten Abtastung einer Kamera mit 640 · 480 Pixeln Auflösung auftritt. So werden die Bedingungen simuliert, die bei einer Bildaufnahme ohne Rauschen und einer Korrespondenzbestimmung ohne Fehlzuordnung auftreten. Da sowohl der 7-Punkte-Algorithmus als auch der 8-Punkte-Algorithmus aus einer zufällig gewählten Teilmenge der Gesamtkorrespondenzmenge die Fundamentalmatrix bestimmt, wird das Ergebnis durch Zufallswerte beeinflusst, welche nicht wiederholbar sind. Aus diesem Grund werden die Berechnungen mehrmals wiederholt. Um die Genauigkeit der Verfahren vergleichen zu können, werden die eingelesenen 14 Transformationen sieben mal durchlaufen. Somit ergeben sich 98 Datensätze, deren Abweichung berechnet werden kann.

Das Ergebnis wird in Tabelle 8.5 dargestellt. Darin werden die einzelnen Verfahren mit den auftretenden Maximalfehlern F_{max} und Durchschnittsfehlern F_{\emptyset} aufgeführt. Darüber hinaus wird noch der Circular Error Probable 95(kurz CEP95, zu Deutsch Streukreisradius genannt) angegeben.

Als Ergebnis ist festzuhalten, dass schon eine Diskretisierung der Bilddaten ausreicht, um F_{CEP95} der Rotationsbestimmung im Bereich von 1-2 Grad auftreten zu lassen. Bei der Berechnung der Translationsrichtung treten deutlich größere Abweichungen mit F_{CEP95} im Bereich von 21-28 Grad auf.

Zurückzuführen sind die großen Abweichungen bei der Translationsrichtungsbestimmung auf im Betrag zu kleine Translationen. Der mit Abstand größte Fehlerherd bei allen Verfahren tritt bei der Translation 10) mit Vektorbetrag 0,1 auf. Andere Translationen, wie 13) mit einem Vektorbetrag von 2,1 werden mit einer Abweichung von wenigen Graden berechnet.

Bei der Rotationsberechnung fällt keine Transformation auf, die von allen Verfahren schlecht berechnet wird. Rotationen um die x-, y- oder z-Achse zeigen das gleiche Fehlerverhalten. Dabei ist die Rotationsberechnung unabhängig zur Translation, diese kann sogar im Betrag null sein.

Auffallend ist, dass bei allen Verfahren immer wieder auftretende Ausreißer festzustellen sind, die von den Referenzdaten extrem abweichen. Diese Werte sind nicht durch eine fehlerhafte Implementierung bedingt, da in 8.3.1 die korrekte Funktionsweise gezeigt wird. Diese Ausreißer treten jedoch nicht immer bei bestimmten Transformationen auf, was darauf schließen lässt, dass das Problem nicht bei der zu ermittelnden Transformation liegt, sondern bei der erzeugenden Minimalmenge, die dem 8-Punkte-Algorithmus/7-Punkte-Algorithmus zu Grunde liegen. Hier zeigt sich eine gewisse Instabilität der Verfahren.

Betrachtet man nur die Rotationsbestimmung, so fällt auf, dass die Verfahren 7-PA und 8-PA innerhalb der robusten Schätzverfahren keine großen Unterschiede aufweisen. Der RANSAC-Algorithmus liefert die besseren Ergebnisse als LMedS. Die Abweichungen F_{\emptyset} und F_{CEP95} sind nur circa halb so groß wie die entsprechenden Werte des LMeds.

Bei der Bestimmung der Translationsrichtung sind die Abweichungen des 7-PA und 8-PA innerhalb von RANSAC wieder sehr ähnlich. Auch fällt kein Unterschied zur Kombination der Verfahren LMedS/7-PA auf. Nur der robuste Schätzer LMedS, zusammen mit dem 8-PA, liefert im Schnitt fast doppelt so schlechte Werte.

	F_{max}	Fø	F_{CEP95}		F_{max}	Fø	F_{CEP95}
RANSAC				RANSAC			
- 7-PA	1,80	0,39	$1,\!30$	- 7-PA	93,00	4,63	21,0
- 8-PA	2,80	0,42	1,20	- 8-PA	170,0	4,14	8,8
LMedS				LMedS			
- 7-PA	4,20	0,66	2,30	- 7-PA	32,00	3,87	24,0
- 8-PA	14,00	0,75	2,30	- 8-PA	170,0	7,49	28,0

Tabelle 8.5: Die linke/rechte Tabelle zeigt den Rotations-/Translationsfehler bezogen auf die einzelnen Verfahren mit simulierter optimaler Kamera ohne Optimierungsverfahren nach der robusten Schätzung der Fundamentalmatrix.

8.3.3 Simulierte optimale Kamera mit Optimierung

Das nächste Experiment läuft unter den gleichen Bedingungen, nur ist diesmal der robusten Schätzung ein Optimierungsverfahren nachgeschaltet, das die Fundamentalmatrix dahingehend optimiert, dass der Sampson-Fehler mit den als ausreißerfrei deklarierten Korrespondenzen minimiert wird. Die Ergebnisse können der Tabelle 8.6 entnommen werden.

Da in dem behandelten Fall keine Ausreißer vorliegen, liefert RANSAC die volle Anzahl an Korrespondenzen, LMedS jedoch nur die Hälfte.

Auffällig ist hierbei, dass bei der Nutzung von RANSAC und einer anschließenden Optimierung durch den LM-Algorithmus eine deutliche Verbesserung bei der Rotations- und Translationsbestimmung stattfindet. Der Unterschied zwischen 7-PA und 8-PA ist zu vernachlässigen.

Bei LMedS tritt durch die Optimierung keine nennenswerte Verbesserung auf, weder bei der Rotations- noch bei der Translationsbestimmung.

Als Resumee der Experimente mit synthetischen Daten ist festzustellen, dass die Bestimmung der Rotation um ein Vielfaches besser berechnet werden kann als die Richtung der Translation. Hierbei ist die Richtung der Translationen mit geringem Betrag schwierig zu bestimmen und in diesem Fall die

 	F_{max}	Fø	F_{CEP95}		F_{max}	Fø	F_{CEP95}
RANSAC			RANSA	C			
- 7-PA	11,00	0,31	$0,\!63$	- 7-PA	10,00	0,31	6,40
- 8-PA	1,20	0,23	0,60	- 8-PA	31,00	1,57	5,20
LMedS			LMedS				
- 7-PA	5,90	0,71	2,50	- 7-PA	130,00	5,60	28,00
- 8-PA	9,10	0,56	1,60	- 8-PA	47,00	4,45	28,00

Tabelle 8.6: Die linke/rechte Tabelle zeigt den Rotations-/Translationsfehler bezogen auf die einzelnen Verfahren mit simulierter optimaler Kamera und Optimierungsverfahren nach der robusten Schätzung der Fundamentalmatrix.

Hauptfehlerquelle. Durch eine anschließende Optimierung der Fundamentalmatrix mit Hilfe des Sampson-Fehlers, kann der RANSAC-Algorithmus eine Steigerung der Genauigkeit erreichen. Im Gegensatz dazu kann LMedS durch ein solches Verfahren keine Vorteile aufweisen. Die Stabilität der Verfahren ist stark abhängig von der Wahl der Menge von Korrespondenzen, die die Fundamentalmatrix erzeugen. Auch wenn die zugrunde liegende Gesamtkorrespondenzmenge und die stattgefunden Transformation gleich ist, kann es zu Ergebnisausreißern kommen.

8.4 Untersuchung der Verfahren mit realen Bilddaten

Bis zu diesem Punkt der Diplomarbeit wurde mit synthetischen Daten gearbeitet. Im Folgenden werden mit realen Bilddaten die beschriebenen Verfahren untersucht. Unter diesen Bedingungen ist mit Rauschen und Ausreißern in den Messdaten zu rechnen.

8.4.1 Versuchsbeschreibung

Bei der Wahl des Experimentes muss berücksichtigt werden, dass die Orientierung der Kamera bzw. die zu bestimmende relative Orientierung zwischen zwei Kameraaufnahmepunkten gemessen werden kann. Ohne diese Referenzdaten kann das Ergebnis des Verfahrens nicht bewertet werden. Die Referenzdaten können von einem anderen Programm berechnet werden, wie z.B. "Camera Calibration Toolbox for Matlab" [16]. Dieses Programm liefert durch Betrachtung mehrerer Bilder eines ebenen Schachbrettmusters die

8.4. UNTERSUCHUNG DER VERFAHREN MIT REALEN BILDDATEN61

Orientierung der jeweiligen Kameraaufnahme. Dieses Programm kann jedoch nicht eingesetzt werden, da die Schachbrettmuster zu erheblichen Fehlern bei der Bestimmung von Korrespondenzen führt. SIFT als auch SURF zeigen extreme Schwächen bei dieser Art der Struktur. Ein anderer Nachteil besteht darin, dass die Fundamentalmatrix nicht aus Korrespondenzen bzw. Merkmalen berechnet werden kann, die in einer Ebene liegen ([1]). Es liegt dieser Arbeit kein Programm zu Grunde, das die Orientierung unter den geforderten Bedingungen berechnen kann. Deshalb müssen die benötigten Referenzdaten gemessen werden. Erste Versuche mit einem Kamerastativ scheitern, da die drei Raumwinkel nur ungenau gemessen werden können. Aus diesem Grund wird ein Tisch als Grundlage für die Kameraaufnahmen verwendet. Dies hat den Vorteil, dass die ebene Tischplatte als gleichbleibendes Bezugssystem benutzt werden kann. Durch Definition der Tischkanten als x- und z-Achse und die y-Achse als Senkrechte zu diesen Achsen können Bewegungen in der Ebene y = 0 und Drehungen um die y-Achse sehr genau gemessen werden. Hierzu wird eine Gerade parallel zur längeren Tischkante auf der Tischplatte eingezeichnet und der Schnittpunkt mit einer kürzeren Tischkante als Ursprung definiert. Eine zweite Gerade wird parallel zur ersten eingezeichnet. Die Kameraaufnahmen werden entlang dieser zwei Geraden vorgenommen und die Position auf dem Tisch eingezeichnet. Damit sind die Positionsdaten bis auf einen Millimeter bestimmbar. Die Drehung um die y-Achse kann durch die Markierung auf der Tischplatte mit Hilfe eines Geodreiecks abgelesen werden. Die Genauigkeit des Ablesevorgangs ist mit einem halben Grad anzunehmen.

Auf die oben beschriebe Weise werden 20 Aufnahmen (siehe Abbildung A.1 und A.2) getätigt und die Orientierung der jeweiligen Kameraaufnahme bezüglich des durch die Tischkanten definierten Koordinatenursprunggemessen (siehe A.1). Die Bilddaten dienen dazu, um mit Hilfe von jeweils SIFT und SURF Merkmale aus diesen Bildern zu bestimmen. Durch die in Kapitel 5.4 beschriebene Doppelprüfung werden die Merkmale der einzelnen Bilder verglichen und Korrespondenzen bestimmt. Aus den 400 Korrespondenzen werden die relativen Orientierungen der Kamerapunkte geschätzt. Um diese Berechnung durchzuführen, werden die Verfahrenskombinationen LMedS/7-Punkte-Algorithmus, LMedS/8-Punkte-Algorithmus, RANSAC/7-Punkte-Algorithmus und RANSAC/8-Punkte-Algorithmus auf die Korrespondenzmengen angewendet. Da diese Mengen einmal mit SIFT und einmal mit SURF gefunden werden, ergeben sich acht Experimente.

8.4.2 Ergebnisse

Die Ergebnisse dieser Versuche sind im Anhang B zu finden. Dort wird die Anzahl der erkannten Korrespondenzen aus zwei Bildern, bezogen auf das verwendete Merkmalsextraktionsverfahren SIFT bzw. SURF, angegeben. Um den Fehler bei der Bestimmung der Orientierung der Kamera zwischen zwei aufgenommenen Bildern zu betrachten, werden die Abweichungen der Rotation und Transaltion in getrennten Tabellen eingetragen. Für jedes oben erwähnte Orientierungsbestimmungsverfahren werden somit zwei Tabellen benötigt. Im Anschluss an diese Werte werden die Verfahren durch Bestimmung der Werte für Anzahl ungültiger Ergebnisse (u.E.), maximaler Fehler, Durchschnittsfehler, Standardabweichung, Median und CEP95 miteinander verglichen (siehe B.19). Um die Aussagekraft der statistischen Werte nicht zu verfälschen, werden die Werte der Vergleiche zweier gleicher Bilder nicht berücksichtigt. Gleichermaßen werden die als ungültig klassifizierten Ergebnisse nicht eingerechnet.

8.4.3 Analyse

Bei der ersten Betrachtung der Ergebnisse fällt auf, dass immer wieder große Ausreißer bezüglich des Fehlerverhaltens auftreten. Die maximalen Fehlerwerte sind bei allen Verfahren sehr groß im Vergleich zu den Werten des Durchschnitts. Aus diesem Grund wird bei der Bewertung der Verfahren größere Gewichtung auf die statistischen Werte Median und CEP95 gesetzt als auf Durchschnitt und Standardabweichung.

Die Bestimmung der Translationsrichtung ist mit allen verwendeten Methoden nicht zu ermitteln. Dies wird deutlich bei der Betrachtung der Median-Ergebnisse. Diese liegen im Bereich von 70° Abweichung gegenüber der Referenzdaten und sind für eine Bestimmung der Position nicht zu gebrauchen. Dies bestätigt die Erkenntnis aus Kapitel 8.3, dass auch kleine Ungenauigkeiten der Korrespondenzdaten zu großen Fehlern in der Berechnung der Translationsrichtung führen. Eine weitere Erklärung für die schlechten Werte sind die zu kleinen Basislinien der Kamerazentren in Bezug auf die betrachtete Szene. Die maximale Distanz zwischen zwei Kamerapositionen beträgt in den Versuchen 2 m. Sehr viele Merkmale haben einen Abstand zur Kamera von 20 m. Dieses Verhältnis ist nicht ausreichend, um gute Ergebnisse der Translationsrichtungsbestimmung zu erzielen. Ein Fehler der Implementierung ist auszuschließen, denn wie in Kapitel 8.3.1 gezeigt wurde, arbeiten die umgesetzten Algorithmen mit idealen Daten fehlerfrei. Aus diesem Grund werden die Schätzungen der Translationsrichtung als zu ungenau angesehen und hier nicht weiter beleuchtet.

8.4. UNTERSUCHUNG DER VERFAHREN MIT REALEN BILDDATEN63

Die Winkelfehler der Rotationsbestimmung sind wesentlich kleiner. Diesbezüglich werden Werte des Median von 2 - 2,6 Grad erreicht. Es ist kein Zusammenhang zwischen den Ergebnissen der Bestimmung von Rotation und Translationsrichtung erkennbar. Sie sind deshalb als entkoppelt zu betrachten.

Bei Anblick aller Verfahren wird deutlich, dass keine Bildpaare existieren, das von allen Verfahren schlecht bearbeitet wird. Somit sind alle Paare als brauchbare Testfälle zu betrachten. Weiter wird beobachtet, dass die Reihenfolge der Bildpaarbetrachtung eine untergeordnete Rolle spielt, da beide Ergebnisse im selben Fehlerbereich liegen.

Korrespondenzbestimmung In den Versuchen wird einmal das Merkmalsextraktionsverfahren SIFT und einmal SURF zur Korrespondenzbestimmung angewandt. Als erstes Ergebnis dieses Vergleichs ist festzuhalten, dass mit SIFT nur sechs während mit SURF 24-mal weniger als sieben bzw. acht Punkte gefunden wurde. Dies hat starke Auswirkungen auf die Verfahren 7-PA und 8-PA, da in diesem Fall keine gültigen Ergebnisse ausgegeben werden können. Zu beobachten ist weiter, dass SURF ca. 10 bis 20 % mehr ungültige Ergebnisse hervorruft, die auf die entwickelte Selbstkontrolle zurückzuführen ist. Im direkten Vergleich über alle eingesetzten Verfahren zur Orientierungsbestimmung zeigt sich bei SURF 62-mal eine höhere Abweichung als 10 Grad zu den Referenzdaten, bei SIFT wurde dieser Wert nur 38-mal überschritten. Der Median der Winkelfehler unterscheidet sich um ca. 0,3 Grad, was die höhere Genauigkeit des SIFT-Algorithmus unterstreicht. Die schlechteren Werte sind mit der Anzahl der gefundenen Korrespondenzen zu erklären, die bei SIFT 1,5-mal größer ist. Dies ermöglicht dem Optimierungsverfahren das Rauschen der Daten besser zu minimieren.

Robuste Schätzung Zwischen den Verfahren RANSAC und LMedS ist kein deutlicher Unterschied bei Betrachtung der Genauigkeit zu erkennen. Auffallend ist jedoch, dass obwohl LMedS immer 50 % der Korrespondenzmenge als Ausreißer klassifiziert, die nach der robusten Schätzung durchgeführte Optimierung annähernd gleiche Abweichungen liefert. Unter der Verwendung von Korrespondenzen aus SURF-Merkmalen liegt die Anzahl der gefundenen Zuordnungen bei 47 von 400 Bildvergleichen unter 16. Dies hat zur Folge, dass keine Optimierung stattfinden kann, da mindestens acht als ausreißerfrei geltende Korrespondenzen nötig sind. Die Wirkung der Optimierung ist in diesen Fällen deutlich sichtbar, denn nur in drei von diesen 47 Bildvergleichen liegt der Fehler der Rotationsbestimmung unterhalb des Medians. Trotz fehlender Optimierung bestimmt der LMedS Rotationen, die um nur ca. acht Grad vom Referenzwert abweichen.

Fundamentalmatrixerzeugung In den Experimenten mit synthetischen Daten (siehe Kapitel 8.3) wurde festgestellt, dass der 8-Punkte-Algorithmus höhere Genauigkeiten liefert als der 7-Punkte-Algorithmus. Dies kann durch das durchgeführte Experiment nicht bestätigt werden. In Kombination mit dem RANSAC-Verfahren liefern der 7-PA und der 8-PA annähernd gleiche Genauigkeiten. Unter der Verwendung von LMedS kommt jedoch ein klarer Vorteil des 7-PA zum Vorschein, denn die Werte des Medians und des CEP95 zeigen, dass der 8-PA das bessere Verfahren ist.

Ungültige Ergebnisse Das in dieser Arbeit entwickelte Verfahren zur Selbstkontrolle greift bei ca. 20 % der Berechnungen ein und klassifiziert das Ergebnis als ungültig, da die zugunde liegende Korrespondenzmenge ein uneinheitliches Ergebnis bei der Sichtbarkeitsprüfung ergibt. Dies zeigt die Bedeutsamkeit und die Notwendigkeit einer solchen Prüfung, um Ausreißer zu erkennen.

8.5 Fazit

Die in diesem Kapitel durchgeführten Experimente zeigen, dass alle Verfahren sich prinzipiell eignen, um die relative Orientierung zwischen zwei Kameraaufnahmen zu berechnen. Die Bestimmung der Translationsrichtung ist dabei stark abhängig von dem Verhältnis zwischen Betrag der zu schätzenden Translation und Entfernung der Kamera zu den abgebildeten Objekten. Die Rotation der Kamera kann im Vergleich dazu wesentlich besser bestimmt werden und ist unempfindlicher gegen auftretendes Rauschen in den Korrespondenzdaten. Aus den SIFT-Merkmalen können genauere Ergebnisse erzielt werden. Die Berechnung der SURF-Merkmale und der daraus gebildeten Korrespondenzen verlief hierbei jedoch um den Faktor 12 schneller. Mit diesem Hintergrund ist die Berechnung der Merkmale mit SURF zu bevorzugen, da in der gleichen Zeit 12-mal der Algorithmus durchlaufen werden kann und somit durch Durchschnittsbildung der Ergebnisse eine noch höhere Genauigkeit zu erreichen ist. In Hinblick auf die robuste Schätzung ist das RANSAC-Verfahren zu wählen, da die Genauigkeit nur unwesentlich von der Nutzung mit LMedS abweicht, jedoch die Schleifendurchlaufzahl dynamisch angepasst wird und so wiederum ein Laufzeitvorteil zu erzielen ist. Die erreichte Genauigkeit bei Betrachtung des Medians und des CEP95 kann keine eindeutige Wertung zwischen dem 7-Punkte-Algorithmus und dem 8-Punkte-Algorithus zulassen. Bei Betrachtung der Laufzeit zwischen den beiden Verfahren zeigt

8.5. FAZIT

sich, dass mit der hier genutzten Implementierung der 8-Punkte-Algorithmus einen Geschwindigkeitsvorteil von ca. 6%aufweist.
Kapitel 9

Zusammenfassung und Ausblick

In dieser Diplomarbeit wurde gezeigt, wie die Fundamentalmatrix, das zentrale Objekt der Epipolargeometrie, aus Bilddaten mit verschiedenen Methoden bestimmt werden kann, um damit die relative Orientierung zwischen zwei Kameraaufnahmen zu berechnen.

Zum Verständnis der verwendeten Algorithmen und Verfahren ist ein umfangreiches theoretisches Wissen über die Beziehungen geometrischer Objekte nötig. Aus diesem Grund wurde zuerst auf die Theorie des Projektiven Raumes eingegangen, um dann mit Hilfe des Modells der Kameraabbildung die Fundamentalmatrix herzuleiten. Deren Eigenschaften wurden ausführlich diskutiert und die Methoden 7-Punkte-Algorithmus und 8-Punkte-Algorithmus zur Bestimmung der Fundamentalmatrix aus Korrespondenzen vorgestellt. Um Unempfindlichkeit gegenüber Ausreißern in den Zuordnungen zu erreichen, wurden die robusten Schätzverfahren RANSAC und LMedS dargestellt und in das Verfahren eingebunden. Fehlerreduktion aus mit Rauschen behafteten Messdaten wurde durch ein an die Gesamtmenge der Korrespondenzen angelehntes Optimierungsverfahren erreicht. Weiterhin wurde gezeigt, wie aus der Fundamentalmatrix die Essentielle Matrix bestimmt werden kann, um damit die relative Orientierung zu berechnen. Weiterhin wurden die Merkmalsextraktionsverfahren SIFT und SURF vorgestellt, die verwendet wurden, um Punktkorrespondenzen zwischen zwei Kamerabildern herzustellen. Nachdem das Gesamtproblem von allen Seiten betrachtet wurde, konnte ein Konzept erstellt werden, welches die Bildung von unabhängigen Teilaufgaben erlaubt und somit durch Modulbildung ein Höchstmaß an Flexibilität und Wiederverwendbarkeit garantiert.

In mehreren Experimenten wurden zunächst die verschiedenen Verfahren auf Stabilität und Rauschempfindlichkeit untersucht, um anschließend die gewonnenen Erkenntnisse an realen Bilddaten zu überprüfen. Dabei wurde zunächst festgestellt, dass beide betrachteten Methoden zur Merkmalsbestimmung Probleme bei wenig oder gleichmäßg strukturierten Szenen aufweisen. In dem einen Fall konnten keine interessanten Punkte gefunden werden und im anderen Fall konnten diese Punkte nicht ausreichend beschrieben werden, so dass es zur Bildung von Fehlkorrespondenzen kam.

Die Ergebnisse des Versuchs mit synthetischen Daten unter der Simulierung einer optimalen Kamera mit einer Auflösung von 640·480 Pixeln zeigten, dass durch die auftretende Diskretisierung der Messwerte eine Ungenauigkeit von 1-2 Grad auftraten.

Durch 20 verschiedenen Kameraaufnahmen (reale Bilddaten) wurden $20 \cdot 20 = 400$ Bildvergleiche berechnet und zur Evaluierung verschiedener Algorithmen herangezogen. Dabei ergaben sich große Probleme bei der Berechnung der Translationsrichtung, was auf eine zu klein gewählte Basislinie der Kameras zurückzuführen ist. Die Bestimmung der Rotation verlief entkoppelt zu dieser Schwierigkeit und wies Medianwerte im Bereich von 2 Grad Abweichung zur Referenzrotation auf. Es wurde festgestellt, dass die verwendeten Verfahren Unterschiede bei der erreichten Genauigkeit aufwiesen, wobei alle Verfahren in Kombination mit dem SIFT-Algorithmus bessere Ergebnisse lieferten als mit dem SURF-Verfahren. Die analysierten Methoden zur robusten Schätzung, sowie zur Fundamentalmatrixerzeugung, zeigten gleiche Ergebnisse in Hinblick auf die auftretende Abweichung der Referenzdaten. Bei der Untersuchung der Laufzeit wurde deutlich, dass SURF um ein vielfaches schneller Korrespondenzdaten berechnen kann als SIFT.

Die experimentellen Ergebnisse haben gezeigt, dass sich alle vorgestellten Verfahren zur Bestimmung der Orientierung aus Korrespondenzdaten eignen. Darauf aufbauend sollten weitere Untersuchungen stattfinden, die eine Beziehung zwischen gewählter Basislinie und zu erreichende Genauigkeit ermitteln. Desweiteren sollte untersucht werden, wie eine Erhöhung der Auflösung der Kamera die Ergebnisse der Orientierungsberechnung verbessert.

Ein weiterer Forschungspunkt besteht darin, anstelle eines Vergleiches einzelner Bilder eine Abfolge von Bildern in Beziehung zu setzen, um somit eine höhere Genauigkeit und Kontinuität zu erlangen. Die Bestimmung der Orientierung von Bild eins zu Bild drei kann auf zwei verschiedene Arten erfolgen. Zum einen durch Betrachtung der Bildfolge Bild eins zu zwei und Bild zwei zu drei und zum durch direkten Vergleich der Bilder eins und drei. Dies erzeugt eine gewisse Redundanz, die genutzt werden kann, um das Rauschen der Daten zu minimieren und somit das Ergebnis zu optimieren. Auf diese Weise kann eine Selbstkalibrierung durchgeführt werden. Die Genauigkeit des Verfahrens wäre somit invariant gegenüber der Länge der betrachteten Bildfolge.

Es ist zu prüfen, ob du die Kombination von Inertialsensoren mit dem hier vorgestellten Verfahren zu einer Verbesserung der Ergebnisse führt und eine Verknüpfung dieser Verfahren die Vorteile bündeln und die Nachteile einschränkt. Im Vergleich zu Inertialnavigationssystemen ist die Berechnung der Orientierung aus Bilddaten zeitaufwendiger und die erreichte Genauigkeit ist relativ gering, aber stabil über längere Zeit. Die Methode die Orientierung aus den Werten von Gyroskopen zu berechnen ist in dieser Hinsicht das Komplement dieses Verfahrens. Inertialsensoren liefern Messergebnisse mehrmals in der Sekunde und sind über kurze Zeiten betrachtet sehr genau. Über einen längeren Beobachtungszeitraum wird die Meßungenauigkeit immer größer. Die Kombinationen dieser Verfahren kann genutzt werden aus den Inertialsensordaten eine erste Schätzung der Fundamentalmatrix zu berechnet. Mit Hilfe dieser Matrix müsste der Korrespondenzpunkt eines Merkmals nicht im gesamten zweiten Bild, sondern nur entlang der Epipolarlinie gesucht werden. Dies spart Rechenzeit und vermindert die Möglichkeit von Fehlzuordnungen.

Literaturverzeichnis

- Richard Hartley, Andrew Zisserman: Multiple View Geometry in computer Vision, Second Edition Cambridge University Press, Cambridge, 2003
- [2] Ressl, Camillo: Geometry, Constraints and Computation of the Trifocal Tensor. Dissertation, Institut f
 ür Photogrammetrie und Fernerkundung, Technische Universit
 ät Wien, 2003
- [3] Lowe, David G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2):91:110, 2004
- [4] Thomas Spall: Benutzung des Trifocal Tensors zum echtzeitfähigen markerlosen Kameraracking Diplomarbeit am Fachbereich Informatik TU Darmstadt 2005
- [5] Klemp, Andreas: Entwicklung eines Stereokamerasystems zur Objekterkennung und Entfernungsbestimmung in mobilen Robotersystemen. Diplomarbeit am Fachbereich Informatik TU Darmstadt 2005
- [6] Petters, Sebastian; Thomas, Dirk: RoboFrame Softwareframework für mobile autonome Robotersysteme. Diplomarbeit am Fachbereich Informatik TU Darmstadt 2005
- [7] Roncat Andreas: RoboFrame Automatisierte Bildorientierung mit projektiven Methoden. Diplomarbeit am Institut für Photogrammetrie und Fernerkundung, Technische Universität Wien, 2006
- [8] Jung, Frank: Objekterkennung mit SIFT-Features. Bachelorarbeit, Fakultät für Angewandte Informatik, Universität Augsburg
- [9] Wang, Junqiu; Cipolla, Roberto; Zha, Hongbin: Image-based Localization and Pose Recovery Using Scale Invariant Features. IEEE International Conference on Robotics and Biomimetics, Shenyang, China, August 2004

- [10] Mikolajczyk, K.; Schmid, C.: A performance evaluation of local descriptors. IEEE Proceedings of Computer Vision and Pattern Recognition, Madison, USA, Juni 2003, 257-263
- [11] Hartley, Richard: In Defense of the Eight-Point Algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, Juni 1997
- [12] Sampson, P. D.: Fitting conic sections to 'verry scattered' data: An iterative refinement of the Bookstein algorithm. Computer Vision, Graphics and Image Processing, 19:97-108, 1982
- [13] Bay, Herbert ; Tuytelaars, Tinne ; Gool, Luc V.: SURF: Speeded Up Robust Features. Proceedings of the ninth European Conference on Computer Vision, 2006
- [14] Universität von Origon, USA: Programmcodes zur SIFT-Merkmalsextraktion. http://web.engr.oregonstate.edu/ hess/index.html
- [15] Eidgenössische Technische Hochschule Zürich: Programmcode zur SURF-Merkmalsextraktion. http://www.vision.ee.ethz.ch/ surf/download.html
- [16] Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/
- [17] Fischler, M. A. und Bolles R. C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. Assoc. Comp. Mach., 24(6): 381-395, 1981
- [18] Steder, Bastian: Techniken für Bildbassiertes SLAM unter Verwendung von Lagesensoren Diplomarbeit Albert-Ludwigs-Universität Freiburg Institut für Informatik, 2007
- [19] Harris, Chris; Stephens, Mike: A combined corner and edge detector. Fourth Allay Vision Conference, 1988, S. 147-151
- [20] Intel, Corp.: Open CV 1.0 http://www.intel.com/technology/computing/opencv/,2006
- [21] Rowlandson, Reginald; Dony, Robert D. :Estimation of epipolar geometry from homography using global otical flow. IEEE Conference on Electrical and Computer Engineering, Guelph Univ., Ont., Canada, 2004.

LITERATURVERZEICHNIS

[22] Grunewald, Andreas: Odometriedatenverbesserung unter Verwendung einer optischen Maus als Bodenkorrelator. Diplomarbeit Technische Universität Darmstadt, Fachbereich Informatik, Fachgebiet Simulation und Systemoptimierung (2005)

Anhang A

Reale Bilddaten und deren Aufnahmeparameter

Im Folgenden werden die aufgenommenen Bilder dargestellt, die zur Erprobung der Verfahren als reale Bilddaten genutzt wurden. Auf der folgenden Seite sind die gemessenen Positionen und Blickrichtungen der Kamera pro Bild in Form einer Tabelle aufgeführt.

Abbildung A.1: Bilder 1 bis 10, gezählt in Reihe von oben nach unten

Abbildung A.2: Bilder 11 bis 20, gezählt in Reihe von oben nach unten

$78 ANHANG\,A.\ REALE\,BILDDATEN\,UND\,DEREN\,AUFNAHMEPARAMETER$

Bildnummer	Drehvektor	Drehwinkel[Grad]	Position[cm]
Bild 1	$(0\ 1\ 0)^T$	0,0	$(3 \ 0 \ 0)^T$
Bild 2	$(0\ 1\ 0)^T$	0,0	$(65, 8 \ 0 \ 0)^T$
Bild 3	$(0\ 1\ 0)^T$	0,0	$(107, 3 \ 0 \ 0)^T$
Bild 4	$(0 - 1 \ 0)^T$	0,0	$(176, 2 \ 0 \ 0)^T$
Bild 5	$(0\ 1\ 0)^T$	12,5	$(184, 7 \ 0 \ -0, 6)^T$
Bild 6	$(0 - 1 \ 0)^T$	15,0	$(162, 2 \ 0 \ -1, 3)^T$
Bild 7	$(0\ 1\ 0)^T$	5,0	$(147,9 \ 0 \ -0,3)^T$
Bild 8	$(0 - 1 \ 0)^T$	14,0	$(117, 1 \ 0 \ -1, 2)^T$
Bild 9	$(0\ 1\ 0)^T$	26,0	$(48, 8 \ 0 \ -1, 3)^T$
Bild 10	$(0\ 1\ 0)^T$	24,0	$(7,0 \ 0 \ -1,2)^T$
Bild 11	$(0\ 1\ 0)^T$	0,0	$(3,9 \ 0 \ -28,3)^T$
Bild 12	$(0\ 1\ 0)^T$	0,0	$(56, 4 \ 0 \ -28, 3)^T$
Bild 13	$(0\ 1\ 0)^T$	0,0	$(112, 7 \ 0 \ -28, 3)^T$
Bild 14	$(0\ 1\ 0)^T$	0,0	$(192, 4 \ 0 \ -28, 3)^T$
Bild 15	$(0\ 1\ 0)^T$	13,0	$(179, 5 \ 0 \ -29, 0)^T$
Bild 16	$(0 - 1 \ 0)^T$	9,5	$(148, 6 0 - 29, 6)^T$
Bild 17	$(0\ 1\ 0)^T$	16,0	$(124, 5 \ 0 \ -29, 1)^T$
Bild 18	$(0 - 1 \ 0)^T$	20,0	$(83, 3 \ 0 \ -30, 0)^T$
Bild 19	$(0\ 1\ 0)^T$	31,0	$(44, 3 \ 0 \ -29, 8)^T$
Bild 20	$(0\ 1\ 0)^T$	12,0	$(23,7\ 0\ -28,9)^T$

Tabelle A.1: Gemessene Daten der Ausrichtung der Kamera, wobei Drehvektor und Drehwinkel die Verdrehung aus der Sichtrichung entlang der z-Achse beschreiben. Position bezeichnet die Koordinaten der Kamera.

Anhang B

Ergebnisse der experimentellen Analyse

In diesem Kapitel werden die berechneten Ergebnisse aus der experimentellen Analyse aus Kapitel 8.4 in Tabellenform gezeigt. An den Seiten der Tabelle sind die Bildnummern angegeben. Die Daten einer Spalte zeigen die Ergebnisse der Vergleiche mit dem angegebenen Bildes mit den Bildern der jeweiligen Spalte. Zuerst werden die aufgenommenen Bilder dargestellt, die zur Erprobung der Verfahren genutzt wurden. Nachfolgend ist die jeweilige Position und Blickrichtung der Kamera pro Bild in Form einer Tabelle angegeben. Anschließend sind die entdeckte Merkmalsanzahl unter Verwendung der Merkmalsextraktionsverfahren SURF und SIFT aufgeführt. Danach werden die Ergebnisse der Orientierungsbestimmung angegeben, wobei die Werte aus der Translationsbestimmung den Werten aus der Rotationsbestimmung folgen.

20	20	27	23	15	22	6	49	20	46	40	98	22	29	32	66	31	81	14	87	436
19	13	28	23	17	37	10	29	9	61	35	35	39	27	22	43	10	64	0	528	87
18	25	20	14	∞	9	45	32	87	7	e	33	22	22	16	14	61	23	546	0	14
17	15	22	33	21	32	17	140	49	19	12	36	19	37	64	141	84	411	23	64	81
16	28	17	17	23	15	55	125	103	9	v	35	20	29	27	76	460	84	61	10	31
15	18	19	20	34	55	27	128	41	16	13	29	16	38	118	403	76	141	14	43	66
14	28	31	28	91	52	78	109	48	17	15	30	24	63	483	118	22	64	16	22	32
13	25	97	149	83	72	43	41	45	50	41	47	89	429	63	38	29	37	22	27	29
12	23	110	68	40	43	25	24	15	54	47	34	384	89	24	16	20	19	22	39	22
11	183	42	28	15	6	17	35	22	30	34	494	34	47	30	29	35	36	33	35	98
10	32	60	46	27	49	∞	12	v	184	503	34	47	41	15	13	v	12	3	35	40
9	19	78	62	38	59	12	20	Ŋ	480	184	30	54	50	17	16	9	19	7	61	46
8	22	26	42	15	6	91	78	594	n	v	22	15	45	48	41	103	49	87	9	20
2	24	28	31	38	39	50	411	78	20	12	35	24	41	109	128	125	140	32	29	49
6	10	39	35	77	49	533	50	91	12	∞	17	25	43	78	27	55	17	45	10	6
5	2	57	72	136	419	49	39	6	59	49	6	43	72	52	55	15	32	9	37	22
4	9	64	85	458	136	77	38	15	38	27	15	40	83	91	34	23	21	×	17	15
3	15	158	570	85	72	35	31	42	62	46	28	68	149	28	20	17	33	14	23	23
2	45	598	158	64	57	39	28	26	78	60	42	110	97	31	19	17	22	20	28	27
1	657	45	15	9	4	10	24	22	19	32	183	23	25	28	18	28	15	25	13	02
Nr.																				
Bild.	-	2	3 S	4	5	9	2	∞	6	10	11	12	13	14	15	16	17	18	19	20

Tabelle B.1: Hier wird die entdeckte Merkmalsanzahl des SURF-Algorithmus in Abhängigkeit zu den jeweiligen Bildern aus der experimentellen Analyse Kapitel 8.4 gezeigt. Die Bildkombinationen mit weniger als 8 Merkmalen sind dick gedruckt.

20	160	67	37	31	33	21	93	40	116	98	192	70	60	40	57	39	93	21	195	1142
19	51	94	42	22	37	14	48	12	156	89	67	93	59	21	42	18	84	4	946	195
18	16	74	36	11	17	52	43	131	9	e	24	47	56	25	31	67	37	1144	4	20
17	29	34	55	43	69	40	277	93	38	28	45	26	110	84	212	132	888	37	84	93
16	34	28	45	59	37	127	284	177	17	10	43	24	85	123	137	1043	132	67	18	39
15	27	25	42	92	155	66	225	69	22	22	37	26	69	239	919	137	212	31	42	56
14	27	34	53	192	123	128	183	75	21	14	35	34	102	1227	239	123	84	25	21	40
13	39	132	286	95	95	80	118	120	67	43	65	130	1124	102	69	85	110	55	59	59
12	61	204	88	43	41	32	33	27	93	61	67	965	130	34	26	24	26	46	93	20
11	375	65	55	30	17	16	46	43	53	81	1185	67	65	35	37	43	45	24	67	193
10	100	88	65	47	73	17	18	14	261	1281	81	61	43	14	22	10	28		89	98
6	38	132	77	51	94	22	30	15	1179	261	53	93	67	21	22	17	38	9	157	116
s	36	47	103	32	24	145	119	1617	15	14	43	28	120	76	20	177	93	130	12	39
2	31	37	60	96	68	151	1298	119	30	18	46	33	118	183	225	284	277	42	48	91
9	12	40	67	170	92	1508	151	145	22	17	16	32	81	128	66	127	40	52	14	21
ъ	21	57	85	276	1033	92	68	24	94	73	17	40	95	123	155	37	60	17	37	33
4	28	74	113	1403	277	169	96	32	51	47	30	43	95	192	92	59	43	11	22	31
3	43	204	1543	113	85	67	00	103	77	65	55	88	285	53	42	45	55	36	42	37
2	89	1639	204	74	57	40	37	47	133	88	65	204	132	34	25	28	34	74	94	67
1	1814	89	42	28	21	12	31	36	38	100	375	61	39	27	27	34	29	16	51	159
BildNr.	1	2	3	4	ы	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20

Tabelle B.2: Hier wird die entdeckte Merkmalsanzahl des SIFT-Algorithmus in Abhängigkeit zu den jeweiligen Bildern aus der experimentellen Analyse Kapitel 8.4 gezeigt. Die Bildkombinationen mit weniger als 8 Merkmalen sind dick gedruckt.

	–	6	~	2	2	ç	~	2	1	6	ç	6	4	<u>.</u>	x	0	~	ç	-	
2	$2.^{4}$	1:6		0.4'	3.	6.(1	4	1	1.5	1.(1:5	1.	5.5	4.5	18(ς.	5.0		
19	2.3	1.8	2	3.9	180	3.3	1.3	180	0.93	1.2	0.83	1.3	5.1	4	180	2.6	2.7	180	0	
18	3.2	1.1	2.2	17	36	1.6	5.8	1.2	180	180	2.8	3.8	1.3	180	5.7	1.2	2.3	0	180	3.6
17	1.8	1.9	0.89	1.5	0.69	5.6	0.69	0.86	3.1	3.1	1.8	2.2	0.93	3.7	1.3	5.3	0	4.7	2.6	1.5
16	3.5	1.8	1.9	2.6	1.4	0.68	0.58	1.4	180	180	4.3	9	1.5	1.4		0	4.2	1.3	2.6	3.6
15	2.8	3.6	3.9	1.7	0.36	1.4	0.72	2.5	1.1	2.8	23	2.1	3.9	1.7	0	5.4	0.58	180	5.2	1.6
14	2.6	180	180	1.8	0.85	2.5	1.9	2.1	180	180	5.2	0.49	2.8	0		0.9	0.93	6.2	3.1	3.1
13	4.9	0.95	0.47	1.7	3.8	2.5	1.7	0.41	5.1	ю	0.7	1.1	0	1.9	0.89	1.7	0.56	1.7	2.1	2.6
12	2	0.35	0.68	1.9	4.4	3.1	1.2	3.7	1.9	2.2	1.2	0	0.17	180	180	5.9	4.9	1.3	1.4	2.1
11	0.54	1	9.2	3.1	6.7	11	e S	5.8	1.9	2.3	0	1.2	1.8	1.7	1.8	3.6	2.3	5.1	0.92	1.6
10	2	180	180	180	2.8	180	7.2	38	1.4	0	1.5	n	180	5.3	er.	37	4.2	180	1.8	1.6
6	2.2	5.6	17	180	180	6.9	e.	180	0	1.7	2.1	1.7	6.8	180	180	180	2.7	180	180	2.1
∞		1.4	1.5	1.9	15	1.3	0.9	0	180	7.6	5.3	4.4	3.6	180	2.4	1.5	0.72	0.73	5.1	8.2
4	1.4	1.4	1.3	2.6	2.4	4.7	0	0.94	c.	4.3	ഹ	2.9	1.3	0.97		0.7	0.52	2.3	2	2.7
9	180	0.95	180	5.4	2.9	0	1.5	0.88	6.7	180	61	6.9	1.9	2.8	1.5	0.78	180	1.8	21	7.1
ю	180	2	0.53	2.4	0	11	1.2	5.3	3.6	2.9	8.6	2	1.7	0.75	0.38	4.8	0.76	6.2	5.9	2.3
4	4.8	5.2	2	0	4.9	2.2	2.6	3.9	10	180	2.3	5.1	3.4	2.2	1.7	2.6	4.3	6.8	180	3.1
က	1.3	1.3	0	1.8	2.1	4.9	1.2	0.81	1.9	7.6	2.9	1.1	0.59	0.71	2.9	2	0.91	2.1	180	2
2	0.86	0	1.7	1.4	4.6	2.2	2.3	2	8.3	5.1	1.4	0.41	0.62	5.3	3.4	2.4	2.8		1.7	1.9
1	0	0.17	1.3	180	6.5	180	2	0.75	2.7	1.7	180	2	1.8	5.8	180	1.8	2	6.6	1.1	2.3
ldNr.													~	.			-	~		
Bi		2	က	4	ы	9	2	∞	6	1(17	1.	1	14	Ĩ	1	1	1	16	$\widetilde{2}$

mkte-Algorithmus aus der experimentellen Analyse	ıgaben beschreiben den Winkelfehler zwischen den	
Tabelle B.3: Ergebnisse der Rotationsberechnung mit Hilfe des LMedS- und	Kapitel 8.4. Die Korrespondenzen wurden aus SIFT-Merkmalen berechnet. L	berechneten Daten und den Referenzdaten. Die verwendete Einheit ist Grad.

20	100	140	94	8.3	110	83	53	96	120	45	73	76	0.89	160	11	180	170	74	100	0
19	09	80	79	83	180	120	66	180	150	130	95	170	98	91	180	49	110	180	0	74
18	71	160	85	130	150	53	6.5	98	180	180	62	130	36	180	21	61	35	0	180	110
17	67	140	87	120	150	160	91	160	110	100	95	170	140	130	150	$\overline{76}$	0	6.6	89	32
16	40	110	55	170	150	150	170	110	180	180	110	87	170	31	150	0	120	36	50	100
15	7.3	74	56	140	170	6.1	51	9.1	17	100	25	4	4.3	57	0	70	150	180	160	31
14	97	180	180	130	160	3.6	110	60	180	180	1.2	13	3.6	0	170	45	72	160	89	2
13	160	120	170	65	73	140	56	130	170	160	22	130	0	150	42	120	13	10	44	19
12	66	150	62	110	130	98	94	160	8.4	37	20	0	16	180	180	92	34	40	17	160
11	160	59	54	16	24	82	78	140	120	36	0	110	14	13	65	150	68	130	87	64
10	110	180	180	180	61	180	92	50	45	0	19	150	180	130	110	110	97	180	130	140
9	94	140	140	180	180	47	120	180	0	15	110	170	170	180	180	180	110	180	180	110
8	16	140	100	120	58	5.1	140	0	180	130	130	170	74	180	39	64	11	160	72	150
2	15	76	110	120	39	96	0	150	64	93	130	42	110	100	38	170	79	160	120	46
6	180	22	180	110	92	0	170	19	59	180	140	110	62	67	5.5	69	180	120	110	90
ъ	180	44	100	25	0	69	110	66	44	76	28	83	67	170	160	33	50	12	120	65
4	10	160	37	0	80	170	140	50	170	180	26	110	150	120	44	160	170	130	180	160
3	2.7	170	0	27	60	69	91	50	110	170	4.8	54	170	49	31	110	95	160	180	76
2	2.5	0	2.5	9.6	63	17	4.4	57	150	170	100	160	110	14	110	76	130	28	62	89
-	0	33	1.7	180	49	180	100	11	88	120	180	71	48	5.1	180	45	78	140	69	94
BildNr.	1	2	3	4	IJ	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20

Tabelle B.4: Ergebnisse der Translationsberechnung mit Hilfe des LMedS- und 7-Punkte-Algorithmus aus der experimentellen AnalyseKapitel 8.4. Die Korrespondenzen wurden aus SIFT-Merkmalen berechnet. Die Angaben beschreiben den Winkelfehler zwischen den berechneten Daten und den Referenzdaten. Die verwendete Einheit ist Grad.

	_																			
20	2.1	1.6	2.1	1.1	180	6.6	2.3	5.3		0.95	1.5	1.4	1.5	1.4	1.3	180	Η	180		0
19	1.1	1.6	2.3	3.1	180	19	2	180			2	1.5	180	3.1	4.7	2.6	1.5	180	0	
18	64	1.1	2.2	18	4.2	2	180	0.81	180	180	1.6	1.4	1.1	5.5	6.9	2.4	1.5	0	180	180
17	2.1	4.7	1.1	1.7	0.93	4.3	0.71	0.38	2.9	180	1.8	4.1	2.7	180	0.49	5.7	0	3.9	1.7	2.5
16	5.8	3.5	2.1	2.6	2.3	0.83	0.65	1.2	5.5	180	2.6	1.6	က	0.94	6.7	0	4.3	1.5	က	3.4
15	2.9	3.7	2.4	1.8	0.36	1.6	4.4	13	180	12	2.3	2	2.4	2	0	5.2	0.35	2.2	4.8	180
14	3.7	5.7	0.51	1.5	0.91	0.47	1.1	1.5	180	2.7	14	2.8	1.5	0	1:1	1.9	2.5	1.6	180	1.3
13	180	0.36	0.51	1.5	0.85	2.8	1.2	2.7	9.8	180	1.2	0.7	0	1.5	3.4	1.9	က	1.1	2.3	2.7
12	2.1	0.41	0.72	5.2	14	180	2.4	8.9	1.8	180	1.6	0	0.78	5.1	5.7	9	2.8	2.4	2.1	3.8
11	0.57	1.7	180	4.8	7.2	180	1.7	2.9	9	1.6	0	1.8	1.5	2.1	2.5	7.9	180	0.86	1.4	1.5
10	2	180	180	7.3	180	14	4	130	0.89	0	1.4	2.1	4.7	2.1	3.2	2	1.6	180	0.39	1.5
9	15	6.5	10	3.4	3.3	2.4	2.7	16	0	0.93	2.2	1.6	180	180	4	180	1.6	180	180	0.66
8	0.75	2.5	0.77	2.2	5.9	0.55	0.91	0	4.1	120	2.8	6.4	0.32	1.6	6.6	0.91	0.75	1.1	140	12
7	54	3.2	1.2	3.7	1.4	1.8	0	0.86	3.4	2.8	0.29	2	0.78	0.79	0.95	0.68	0.46	2	1.5	5.4
6	3.2	4.8	5	2.3	11	0	2.3	0.86	180	180	180	180	6.1	2.2	1.6	0.5	3.8	1.1	2.8	180
5	180	5.4	5.1	4	0	8.4	5	0.48	4.8	2.3	7.4	2.5	180	1.6	0.31	4.1	1.2	5.3	180	3.8
4	9	1.3	1.1	0	3.6	2.1	3.1	4.9	8.4	9	co	1.5	1.8	1.9	1.7	2.8	2.6	180	180	4.9
3	3	1.6	0	2.2	12	4.9	1.2	1.5	180	180	2.4	0.36	0.52	1.4	0.86	1.9	0.96	1.7	2.4	2.1
2	1.2	0	0.8	180	5.6	180	3.2	2	5.6	2.1	0.76	0.33	0.95	3.8	3.8	5	1.2	1.1	1.5	2.8
1	0	1.1	1.7	4	7.5	3.2	180	3.6	4.9	8.2	180	2.2	2.4	3.8	3.7	e S	4.3	1.3	2.6	2.2
BildNr.	1	2	с С	4	5	9	7	×	6	10	11	12	13	14	15	16	17	18	19	20

5: Ergebnisse der Rotationsfehler mit Hilfe des LMedS- und 8-Punkte-Algorithmus aus der experimentellen Analyse Kapitel	respondenzen wurden aus SIFT-Merkmalen berechnet. Die Angaben beschreiben den Winkelfehler zwischen den berechneten	len Referenzdaten. Die verwendete Einheit ist Grad.
abelle B.5: Ergebnisse	.4. Die Korrespondenzen	aten und den Referenzd

20	110	79	88	23	180	83	78	160	120	41	94	16	75	26	2.5	180	54	180	100	0
19	110	100	76	75	180	80	110	180	33	49	82	160	180	120	170	47	81	180	0	110
18	130	160	160	20	34	130	180	110	180	180	130	150	40	24	5.7	17	34	0	180	180
17	100	21	61	95	48	150	92	170	110	180	88	21	31	180	120	100	0	140	79	7.7
16	6.1	45	120	160	11	73	170	98	140	180	16	11	170	110	36	0	130	6.1	55	100
15	6	110	13	130	150	7.9	3.5	13	180	170	13	53	53	44	0	23	170	150	140	180
14	11	90	44	65	160	47	110	110	180	130	11	10	0.96	0	6.3	86	170	71	180	1.7
13	180	30	160	81	95	160	110	66	150	180	21	$\frac{38}{38}$	0	170	11	71	71	42	39	12
12	96	150	54	130	17	180	41	130	15	180	20	0	12	170	19	160	20	74	26	150
11	160	80	180	21	130	180	9.9	120	42	26	0	100	110	2.7	58	120	180	69	67	98
10	100	180	180	92	180	140	90	130	13	0	160	150	140	48	110	89	37	180	93	55
6	14	130	160	120	170	44	110	49	0	21	140	2.4	180	180	29	180	44	180	180	45
x	16	48	41	130	97	2.6	150	0	39	100	6.5	160	17	63	17	27	30	15	92	160
2	x	140	45	100	94	150	0	27	64	94	72	38	110	27	32	170	110	160	80	130
9	110	140	32	14	83	0	54	22	180	180	180	180	19	4.3	10	130	82	29	61	180
ъ	180	16	13	95	0	83	26	8.9	160	30	150	63	180	150	160	36	120	13	180	34
4	3.3	27	160	0	79	12	14	130	150	170	21	170	00	130	150	150	63	180	180	53
3	8.9	160	0	14	35	37	89	96	180	180	44	24	150	140	97	120	97	170	20	90
2	2.2	0	∞	180	4.1	180	150	140	130	170	170	140	2.3	33	49	140	24	160	89	110
1	0	14	4.7	71	47	74	180	160	68	42	180	94	81	160	13	25	61	110	100	110
BildNr.	1	2	3	4	ы	9	7	×	6	10	11	12	13	14	15	16	17	18	19	20

Tabelle B.6:Ergebnisse der Translationsberechnung mit Hilfe des LMedS- und 8-Punkte-Algorithmus aus der experimentellen AnalyseKapitel 8.4.Die Korrespondenzen wurden aus SIFT-Merkmalen berechnet.Die Angaben beschreiben den Winkelfehler zwischen den berechneten Daten und den Referenzdaten. Die verwendete Einheit ist Grad.

2.3	2	1.8	7.9	2.2	7.7	1.6	180	0.53	1.6	1.5	2.9	4.8	5		5.7	1.2	11	0.99	0
2.8	1.7	4.4	3.2	2.6	180	2.3	180	0.72	0.4	0.85	1.3	6.2	3.3	3.8	2.7	3.3	180	0	0.79
1.2	1.2	1.8	13	9.6	2.1	7.8	0.89	180	180	1.2	1.9	3.8	5	1.8	1.5	4.6	0	180	8.3
10	1.9	0.52	2.6	2.2	5.8	1.1	3.6	2.7	180	1.7	1.4	2.7	3.2	0.88	6.2	0	3.3	2.2	2.2
0.74	2.9	1.9	2.8	4.8	0.61	180	1.1	17	180	180	2.8	2.2	0.92	5.1	0	5.1	2.5	2.6	4
4.5	3.9	2.8	1.7	0.38	0.75	1.2	2.8	3.2	5.5	3.6	∞	4.2	0.7	0	1.3	0.45	3.6	4	1.7
4	2.9	1.6	1.9	0.73	0.41	1.1	2.7	2.7	1.7	6.5	0.67	1.4	0	1.9	2.1	2.1	20	3.1	180
1.4	0.17	180	2.1	4	1.8	0.96	3.2	3	2.5	1.1	0.39	0	0.52	3	1.8	0.83	1.1	3.1	180
1.9	0.33	0.2	2.9	3.7	5.7	1.4	2.1	1.6	4.2	1.4	0	0.09	1.5	180	1.7	2.7	1.8	2.6	1.1
180	1.4	1.4	4.4	2.9	3.6	1.2	4.4	2.2	180	0	1.4	1.3	2	3.4	180	1.8	7.7	0.94	2.5
ъ	180	180	180	180	180	7.2	180	0.52	0	1.4	2.2	IJ	6.4	3.1	10	4.3	180	0.4	0.69
2.6	5.6	2.2	180	2.9	120	2.4	120	0	1.2	2.4	1.9	7.9	2.9	4.9	180	4.2	180	1.2	0.76
1.2	1.5	2.4	180	2.6	0.73	0.9	0	180	130	2.5	180	6.3	0.83	3.2		0.75	2.9	1.6	1.6
1.2	1.6	1.7	2.6	1.9	2.3	0	5.4	3.5	3.8	1.7	5.3	0.93	0.78	0.97	180	0.58	2	1.7	2.2
11	1.6	1.4	4.3	5.6	0	3.9	0.47	4.8	180		4.1	180	0.31	2.2	0.71	4	1.6	180	7.5
5.5	6.1	5.3	2.6	0	6.9	1.6	8.1	3.6	180	9.6	4.2	33		0.33	5.5	1.5	32	9.5	0.24
0.97	4.6	1.5	0	e.	3.2	2.3	2.2	180	180	3.1	180	2.4	2	1.7	2.5	2.8	180	8.9	180
1.8	1.2	0	1.6	3.4	1.6		2	180	180	2	0.28	0.57	1.2	3.2	2.3	1.2	1.8	2.6	3
2.2	0	0.37	7.1	5.4	2.6	1.3	1.7	5.5	180	1.2	0.34	0.5	5.6	3.9	3.3	1.5	1.2	1.9	1.8
0	1.4	1.6	1.6	7.1	8.6	180	0.51	8.7	1.8	0.88	1.7	1.8	4	3.8	0.59	3.1	1.4	1.2	2
1	2	3	4	5	9	7	×	6	10	11	12	13	14	15	16	17	18	19	20
	$1 \qquad \qquad 0 \qquad 2.2 \qquad 1.8 \qquad 0.97 \qquad 5.5 \qquad 11 \qquad 1.2 \qquad 1.2 \qquad 2.6 \qquad 5 \qquad 180 \qquad 1.9 \qquad 1.4 \qquad 4 \qquad 4.5 \qquad 0.74 \qquad 10 \qquad 1.2 \qquad 2.8 \qquad 2.3 \qquad 0.23 \qquad 0.23$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															

Kapitel 8.4. Die Korrespondenzen wurden aus SIFT-Merkmalen berechnet. Die Angaben beschreiben den Winkelfehler zwischen den berechneten Daten und den Referenzdaten. Die verwendete Einheit ist Grad.

20	110	110	97	170	60	98	52	180	140	73	110	170	170	170	1.4	150	36	140	110	0
19	83	89	130	80	90	180	110	180	85	110	100	160	110	130	140	140	20	180	0	100
18	67	26	18	22	160	120	34	110	180	180	90	49	38	29	32	160	37	0	180	170
17	3.5	53	73	150	31	89	120	33	96	180	110	3.2	82	130	14	95	0	4.4	98	9.7
16	39	100	20	140	43	140	180	95	72	180	180	95	150	130	85	0	84	30	130	160
15	12	110	11	16	160	170	47	92	33	83	17	37	29	170	0	7.1	48	17	140	1.1
14	26	29	19	120	160	52	84	43	23	0.55	5.7	7.4	1.9	0	140	42	160	110	59	180
13	43	84	180	78	56	100	91	150	27	83	15	2.8	0	1.3	34	50	140	150	31	180
12	73	140	57	68	44	130	42	150	15	160	11	0	7	26	180	18	30	76	34	45
11	180	89	31	14	12	76	90	140	65	180	0	100	29	1.1	2.3	180	80	150	74	11
10	9.9	180	180	180	180	180	90	180	22	0	19	150	130	150	110	63	160	180	110	150
6	74	130	59	180	8.9	170	71	150	0	27	110	170	110	19	150	180	110	180	170	150
8	160	140	130	180	110	22	150	0	180	93	6.6	180	100	53	3.2	88	14	51	130	100
2	31	2	19	140	60	160	0	20	160	88	74	16	91	81	56	180	62	120	96	35
9	110	19	160	72	66	0	76	20	49	180	3.6	15	180	52	18	140	170	19	180	52
ъ	34	14	26	63	0	95	22	31	170	180	33	9.3	41	170	85	46	47	34	160	14
4	3.2	3	15	0	93	46	82	130	180	180	7.4	180	73	170	46	160	34	180	57	180
3	2.9	2.4	0	7.5	54	150	11	100	180	180	15	00	160	31	5.8	130	74	160	66	140
2	1.6	0	2	18	2.2	25	170	39	160	180	48	140	70	10	100	78	55	160	110	90
1	0	1.4	2.1	1.9	42	110	180	11	52	120	15	27	14	25	8.8 8	39	29	68	72	120
BildNr.	1	2	3	4	IJ	9	2	∞	6	10	11	12	13	14	15	16	17	18	19	20

Tabelle B.8: Ergebnisse der Translationsberechnung mit Hilfe des RANSAC- und 7-Punkte-Algorithmus aus der experimentellen Analyse Kapitel 8.4. Die Korrespondenzen wurden aus SIFT-Merkmalen berechnet. Die Angaben beschreiben den Winkelfehler zwischen den berechneten Daten und den Referenzdaten. Die verwendete Einheit ist Grad.

20	1.8	1.8	5.4	4	5.2	10	1.2	180	0.64	1.4	1.5	2.3	1.5	180	1.4	9.5	0.98	12	0.97	0
19	1.2	1.6	2	4.9	5.6	180	5.3	1.6	1.1	0.8	0.82	180	1.9	8.1	3.2	2.6	2.7	180	0	0.97
18	6.2	1.3	1.9	9.9	3.5	2.1	5.8	1.1	180	180	1.2	2.1	1.2	6.5	3.5	1.5	3.8	0	180	7.2
17	3.6	9.7	0.81	1.7	0.79	3.7	0.59	4.3	4.2	3	2.6	4.3		5.9	1.2	3.8	0	3.8	2.6	2.6
16	-	180	1.9	2.6	1.4	0.58	0.77	1.2	180	180	180	5.8	1.8	2.2	4.8	0	4.4	2.4	2.7	e.
15	180	3.9	3.3	1.7	0.42	1.4	2.7	4.7	180	3.4	180	6.2	0.43	2.1	0	1.1	0.7	2.2	3	0.94
14	4.2	3.3	0.51	1.9		1.5	0.73	1.4	180	2.9	6.1	1.8	1.1	0	0.91	0.93	5	2.3	2.3	4.6
13	1.2	0.37	0.45	1.9	0.64	2.3	0.91	0.22	3	7.1	0.62	0.26	0	0.46	0.35	1.6	2.4	2	180	1.8
12	1.8	0.81	0.5	2.2	5.6	180	1.5	3.3	5.2	5.2	1.1	0	0.12	1.5	180	4.3	3.3	2.1	1.5	1.8
11	0.47	1.5	က	5.7	9.6	9	3.7	4.4	2.3	5.7	0	1.5	1.4	2.8	180	180	180	1.2	0.9	2.5
10	4.7	180	7.6	180	3.1	180	3.8	25	0.78	0	1.6	2.3	4.3	8.4	3.3	180	3.2	180	0.75	2
9	8.8	4.7	9.4	180	180	180	180	180	0	0.97	2.8	1.9	7	4.5	3.8	180	5.9	180	180	0.64
x	2	1.6	1.5	2.6	6	0.62	0.9	0	180	10	3.9	180	6.8	1.2	4.8	1.4	0.96	0.91	5.1	6.2
7	1.4	1.5	1.1	2.3	2.7	4.8	0	6.9	3.5	180	7.5	0.56	1.1	1.9	0.93	1.7	180	6.5	1.6	1.5
9	180	180	2.7	180	7.7	0	3.3	0.58	6.9	180	9	180	2.3	0.58	1.7	0.59	1.5	1.9	10	ю
ŋ	5.1	6.3	5.7	1.4	0	7.2	2.2	8.2	180	180	4.6	4.5	3.6	2	0.43	4.8		180	180	180
4	1.7	7.7	1.4	0	က	2.2	2.7	5	180	180	4.5	180	1.7	1.8	1.6	2.7	5	9.9	4.2	4.6
3	1.4	0.65	0	2	3.8	2.6	1.2	1.5	5.7	180	1.5	0.28	0.46	1.2	co	1.9	0.93	1.7	2	3.1
2	1.5	0	0.68	5.4	2.7	c,	1.3	1.2	5.2	3.8	1.5	0.32	0.41	5.5	2	4.3	1.3	1.4	1.7	1.9
-	0	1.4	1.6	2.1	4.4	11	1.6	1.2	9.7	1.8	180	1.9	2.3	4.3	180	2.2	2.1	1.2	1.1	2.4
BildNr.	1	2	с С	4	ى ت	9	7	×	6	10	11	12	13	14	15	16	17	18	19	20

orithmus aus der experimentellen Analyse	schreiben den Winkelfehler zwischen den	
Tabelle B.9: Ergebnisse der Rotationsberechnung mit Hilfe des RANSAC- und 8-Punkte-A	Kapitel 8.4. Die Korrespondenzen wurden aus SIFT-Merkmalen berechnet. Die Angaben	berechneten Daten und den Referenzdaten. Die verwendete Einheit ist Grad.

20	27	98	170	170	21	100	23	180	140	60	79	170	77	180	19	170	7.9	160	110	0
19	110	83	92	91	130	180	150	49	170	97	84	180	130	100	120	47	65	180	0	75
18	16	150	150	68	16	57	48	34	180	180	90	140	34	23	160	59	2	0	180	120
17	12	20	27	130	130	160	100	93	110	110	63	23	150	130	170	73	0	1.9	110	87
16	9.6	180	120	160	27	140	5.8	100	180	180	180	100	160	22	41	0	120	4.5	45	63
15	180	110	12	140	160	5.8	5.8	51	180	71	180	17	45	130	0	29	110	26	170	4.1
14	23	31	31	130	170	23	26	71	180	140	4.9	32	1.3	0	170	120	170	130	110	170
13	14	78	170	56	110	93	94	28	27	170	5.1	1.7	0	2.1	40	150	39	2.1	180	20
12	81	89	67	100	16	180	50	140	57	120	25	0	5	1.6	180	160	30	130	18	4.5
11	170	94	14	160	43	120	69	140	69	97	0	87	6.8	3.1	180	180	180	92	87	21
10	39	180	170	180	61	180	90	50	63	0	25	150	130	4.8	110	180	97	180	91	120
9	25	150	130	180	180	180	180	180	0	25	100	170	110	89	140	180	160	180	180	130
∞	170	140	140	130	47	20	150	0	180	130	140	180	100	110	55	120	160	120	120	150
4	71	170	25	82	39	120	0	65	56	180	33	45	62	41	61	140	180	31	88	3.6
9	180	180	140	180	81	0	72	14	97	180	110	180	100	130	8.9	140	27	14	82	170
ъ	4.1	11	9.3	150	0	96	61	42	180	180	21	31	59	100	160	41	170	180	180	180
4	2.6	17	0.94	0	100	170	85	120	180	180	17	180	23	130	46	130	120	60	69	160
e S	1.2	1.3	0	14	36	48	7.6	94	130	180	26	28	170	16	16	68	92	19	100	140
5	3.4	0	0.09	4	19	32	170	140	150	170	39	140	100	30	8.1	110	17	150	78	100
	0	3 S	5	1.4	2.2	110	6.6	20	48	66	180	86	12	150	180	13	78	110	72	67
BildNr.	1	2	3	4	ى ت	9	2	∞	6	10	11	12	13	14	15	16	17	18	19	20

Tabelle B.10: Ergebnisse der Translationsberechnung mit Hilfe des RANSAC- und 8-Punkte-Algorithmus aus der experimentellen Analyse Kapitel 8.4. Die Korrespondenzen wurden aus SIFT-Merkmalen berechnet. Die Angaben beschreiben den Winkelfehler zwischen den berechneten Daten und den Referenzdaten. Die verwendete Einheit ist Grad.

20	2.4	180	5.5	6.3	2.2	180	9.6	7.1	0.44	1.8	1.6	1.6	1.8	6.6	1.7	5.3	2.8	0.95	1.2	0	
19	1.9	1.5	2.3	4.6	2.5	180	4.3	180	1.2	0.58	0.83	2.6	1.6	4.6	1.8	4.7	2.4	180	0	0.8	:
18	1.4	0.98	2.2	5.7	180	1.7	1.5		180	180	2.2	1.8	1.7	2.3	11	1.5	47	0	180	180	.
17	4.6	4.6	0.86	3.5		6.9	0.95	0.94	2.6	5.6	3.9	4	0.65	180	1.5	180	0	180	2.5	2.6	
16	180	0.73	2.4	2.9	1.7	1.3	180	1.4	180	180	7.3	2.6	3.2	1.2	7.5	0	1.8	2	3.5	3.8	-
15	2.7	5.7	2.8	1.7	0.35	1.5	4	က	180	3.2	7.5	3.7	1.9	1.1	0		0.73	22	2.2	180	
14	180	180	2.7	1.8	180	0.54	1.2	5.1	4.1	2.9	14	2	0.58	0	0.72	1.4	2.7	6.6	3.6	2	
13	4	180	180	1.9	0.71	5.7	0.83	0.28	4.4	1.9	180	2.8	0	1.7	2.6	1.4	3.1	0.95	2	4.1	
12	2.5	0.47	1.1	5.8	1.2	3.1	2	4.4	180	5.5	1.3	0	1.4	6.3	5.2	4.7	180	3.3	1.7	1.4	
11	0.47	2	2.3	5.6	180	2.5	1.8	9.1	8.2	4.2	0	n	1.2	3.3	9.2	180	2.1	1.5	1.1	5.6	
10	2.3	1.7	2.1	180	180	6.6	21	180	0.59	0	1.5	2	180	3.9	180	180	3.4	180	0.23	7.8	, , ,
6	0.46	1.6	5.6	23	2.4	180	180	180	0	2.9	5	1.3	10	3.8	3.7	180	2.9	180	1.7	0.49	
∞	180	180	2.6	2.4	13	4.9	0.93	0	180	180	8.2	4.2	0.51	180	4.7	1.4	0.92	0.87	180	3.4	:
7	180	180	2.6	3.7	1.1	1.5	0	1.7	ю	8.9	4.5	∞	0.85	1.6	2.5	0.57	1.5	2.8	180	8.5	
9	180	8.9	14	2.2	ഹ	0	1.1	3.4	50	6.2	2.3	6.5	180	0.61	-	0.7	3.6	1.9	180	8.8	
ъ	180	180	2.6	1.6	0	1.5	1.7	4.9	6.5	2.5	180	5.4	0.64	0.73	0.97	13	2.2	180	2.2	2.1	f
4	180	180	2.4	0	2.1	2.2	2.7	3.1	9	19	2.4	3.5	1.8	2.2	1.2	2.5	ю	9	11	5.4	•
3	2.8	3	0	180	0.74	7.4	1.5	2.1	4.6	12	180	1.1	0.61	2.1	5.1	1.8	0.89	6	3.8	180	
2	3.8	0	2	3.7	1.2	180	2.1	1.6	6.9	2.2	2.9	0.36	0.42	180	5.3	5.6	2.8	2	1.5	2.4	;
1	0	5.3	180	180	180	180	4.5	6.8	2.9	2.1	0.48	1.7	1.9	32	180	8.5	3.1	2.3	1.1	15	، :
BildNr.	1	2	3	4	л С	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	

nalyse	en den	
ellen A	zwische	
sriment	lfehler	
ər expe	Winke	
aus d	$n \ den$	
thmus	chreibe	
-Algori	n bese	
Punkte	Angabe	
I-7 bui	Die .	
IedS- 1	rechnet	t Grad.
des LN	len be	heit is
Hilfe e	lerkma	ete Ein
ıg mit	URF-N	rwende
erechui	aus Sl	Die ve
tions be	rurden	daten.
r Rota	nzen w	eferenz
isse de	ponder	$den R_{0}$
Ergebn	Korres	pun u
3.11: I	4. Die	n Date
elle E	itel 8.4	chnete
Tab	Kap	$ber\epsilon$

20	41	180	86	64	60	180	160	94	43	150	81	120	110	93	56	33	100	18	80	0
19	75	98	20	110	94	180	93	180	37	110	62	150	120	20	74	150	110	180	0	98
18	110	170	38	120	180	110	130	42	180	180	92	160	37	71	110	110	64	0	180	180
17	130	84	87	130	170	15	110	19	38	94	50	64	140	180	160	180	0	180	110	95
16	180	33	150	150	24	8.4	180	120	180	180	170	87	13	140	95	0	150	110	56	140
15	50	100	98	20	160	170	59	150	180	110	110	69	130	31	0	140	170	55	90	180
14	180	180	09	130	180	62	69	26	130	120	130	71	2	0	26	130	120	26	54	57
13	85	180	180	83	59	66	120	34	68	120	180	160	0	110	130	2.9	120	130	65	150
12	120	140	80	41	85	96	92	100	180	83	110	0	3.9	75	78	110	180	47	26	59
11	170	140	110	69	180	100	110	46	86	140	0	30	110	100	140	180	88	92	68	19
10	62	66	100	180	180	110	140	180	110	0	25	120	180	110	180	180	82	180	100	96
9	72	35	97	130	20	180	180	180	0	43	120	4.4	170	130	41	180	110	180	8.9	140
∞	180	180	90	47	120	120	37	0	180	180	75	77	140	180	23	110	20	36	180	74
2	180	180	110	160	110	41	0	33	120	140	130	52	120	32	82	170	170	38	180	56
9	180	160	110	5.4	95	0	25	160	150	78	55	88	180	45	3.1	150	150	96	180	6
വ	180	180	49	15	0	170	69	24	140	97	180	15	110	160	150	83	30	180	22	62
4	180	180	30	0	140	170	110	41	86	130	120	39	95	140	58	150	120	62	85	100
က	13	34	0	180	89	150	95	170	150	160	180	27	150	130	100	160	92	44	71	180
2	4.3	0	170	170	81	180	100	60	140	150	130	34	100	180	100	110	95	160	96	110
	0	37	180	180	180	180	98	26	110	90	170	100	94	7.1	180	58	73	110	71	41
BildNr.	1	2	3	4	ы	9	2	×	6	10	11	12	13	14	15	16	17	18	19	20

Tabelle B.12: Ergebnisse der Translationsberechnung mit Hilfe des LMedS- und 7-Punkte-Algorithmus aus der experimentellen Analyse Kapitel 8.4. Die Korrespondenzen wurden aus SURF-Merkmalen berechnet. Die Angaben beschreiben den Winkelfehler zwischen den berechneten Daten und den Referenzdaten. Die verwendete Einheit ist Grad.

20	2.9	3.4	7.7	5.7	2.3	180	9.1	7.4	0.81	1.6	1.6	5.8	2.8	0.53	3.1	16	2.8	9.8	1.2	0
19	1.1	1.5	2.6	3.4	2.7	180	2	180	1.2	2.6	0.85	1.4	1.7	3.5	2.7	2.9	2.4	180	0	0.81
18	1.1	1.1	12	7.7	180	1.9	1.6	0.81	180	180	4	1.3	1.2	4.9	9.8	1.7	2.6	0	180	3.4
17	3.3	2.6	5.2	4.6	0.93	1.5	1.6	0.35	1.1	3.5	180	5.9	1.1	180	1.4	5.3	0	4.5	2.4	2.7
16	7.5	3.1	2.3	∞	1.9	0.54	180	1.3	180	180	5.5	2.5	2.1	5.1	8.6	0	180	1.7	e	180
15	180	4.1	2.5	1.6	0.64	2.3	1.1	10	6.3	3.6	0.85	5.2	4.5		0	3.2	1.3	13	3.1	2.2
14	180	1.7	5.6	2.7	1.7	6.7	1.8	1.5	5.1	6.4	3.9	2	1.9	0	0.44	0.97	4.2	7.1	3.2	7.2
13	3.3	4.6	0.49	2.4	0.64	7.5	2	0.48	3.3	6.1	2.5	7.2	0	3.5	0.35	3.3	0.94	3.5	3.2	2.8
12	3.1	1.1	0.91	4.5	2.3	5.4	1.3	6.4	6.1	4.5	3.9	0	2	4.2	5.3	13	1.5	1.2	180	1.9
11	0.29	1.7	2.2	180	180	180	1.6	2.4	2.5	1.8	0	1.5	5.9	180	5.4	6.7	4.8	2.4	0.83	1.7
10	2.9	3.9	180	38	2.5	6.6	4.5	180	180	0	1.6	180	180	4	5.3	180	4.5	180	1.3	1.6
6	3.8	11	9.6	3.3	2.8	3.8	180	180	0	5.1	180	1.4	3.9	4.7	3.8	180	3.6	180	1.9	0.57
×	7.6	3.9	1.9	က	27	3.6	2.7	0	180	180	1.9	12	0.64	4.9	0.71	1.4	0.41	1.2	180	3.2
4	180	0.97	0.98	2.6	1.9	1.1	0	7.2	4	11	3.7	4	1.7	1.2	1.3	0.49	0.49	12	2.4	3.2
9	6.8	9	6.1	2.1	10	0	4	1.5	180	6.6	11	12	e S	0.91	3.3	1.1	5.6	4.5	4.7	10
IJ	180	2.4	0.63	1.3	0	3.9	1.5	180	3.7	16	180	180	0.67	0.87	0.31	2.7	0.73	180	2.4	3.6
4	180	180	1.5	0	1.5	2.1	2.5	2.3	2.7	5.8	11	4.4	1.3	2.1	2.4	2.6	180	7.7	3.7	6.2
°.	7.5	1	0	180	1.9	ю	5.5	1.3	180	13	3.8	1.4	0.44	2.4	8.3	4.2	0.83	10	2.1	2.3
2	1.7	0	1.8	180	180	2.6	180	180	1.7	180	3.2	0.84	9	1.8	21	4	0.98	1.8	4.2	1.4
1	0	4.5	4.8	180	180	6.8	8.3	2	2.6	6.9	0.5	1.9	4.2	20	180	180	2.8	2.2	3.6	2.6
BildNr.	1	2	33	4	n	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20
	L		L	L			L	L	L	L			L				L	L		

Tabelle B.13: Ergebnisse der Rotationsberechung mit Hilfe des LMedS- und 8-Punkte-Algorithmus aus der experimentellen Analyse Kapitel 8.4. Die Korrespondenzen wurden aus SURF-Merkmalen berechnet. Die Angaben beschreiben den Winkelfehler zwischen den berechneten Daten und den Referenzdaten. Die verwendete Einheit ist Grad.

20	150	100	110	120	73	180	160	110	140	35	86	37	120	76	44	170	98	43	100	0
19	110	86	80	110	96	180	100	180	170	80	79	2.6	130	130	73	46	110	180	0	66
18	69	170	110	120	180	62	140	140	180	180	27	140	42	100	120	75	98	0	180	130
17	100	100	30	130	110	150	130	170	82	110	180	45	130	180	140	59	0	80	110	95
16	160	100	140	56	33	130	180	100	180	180	170	58	96	34	100	0	180	64	49	180
15	180	66	110	41	17	12	78	11	110	120	45	73	41	160	0	120	78	81	110	86
14	180	120	97	18	160	39	130	51	130	69	27	71	75	0	170	130	170	120	64	96
13	96	91	170	110	110	65	70	48	46	140	140	32	0	97	63	150	140	88	150	110
12	120	72	95	120	85	86	87	43	150	66	46	0	110	50	100	24	86	140	180	59
11	160	26	87	180	180	180	100	110	61	32	0	110	170	180	110	130	33	85	100	82
10	75	170	180	150	94	110	74	180	180	0	22	180	180	55	120	180	85	180	120	160
6	76	140	110	74	90	50	180	180	0	9.6	180	5.7	78	120	120	180	19	180	170	37
8	32	88	94	130	130	13	140	0	180	180	110	100	39	41	40	110	38	28	180	72
7	180	73	87	42	140	170	0	68	120	170	64	130	100	62	95	1.2	100	120	76	100
9	110	27	150	170	58	0	110	87	180	78	85	23	97	130	20	46	120	120	64	63
5	180	93	62	160	0	20	110	180	120	45	180	180	110	170	160	160	86	180	100	69
4	180	180	36	0	170	170	130	47	110	92	53	36	140	170	50	150	180	60	90	100
3	54	94	0	180	94	150	35	49	180	170	130	86	170	130	38	44	93	110	66	87
2	2.6	0	14	180	180	78	180	180	33	180	56	120	92	120	140	89	110	160	66	72
1	0	26	20	180	180	110	2.6	110	110	18	170	88	120	22	180	180	73	110	100	130
BildNr.	1	2	3	4	5	9	7	×	6	10	11	12	13	14	15	16	17	18	19	20

Tabelle B.14: Ergebnisse der Translationsberechnung mit Hilfe des LMedS- und 8-Punkte-Algorithmus aus der experimentellen Analyse Kapitel 8.4. Die Korrespondenzen wurden aus SURF-Merkmalen berechnet. Die Angaben beschreiben den Winkelfehler zwischen den berechneten Daten und den Referenzdaten. Die verwendete Einheit ist Grad.

20	2.8	4.8	3.3	2	2.3	9	3.2	3.1	0.58	1.6	5.8	1.5	3.5	7.8	13	8.7	1.7	5.1	0.8	0
19	1.1	1.6	2.3	3.1	2.7	17	1.9	180	1.1	0.56	1.3	2	16	2.4	2.3	180	2.5	180	0	0.78
18	5.3	1.2	4.4	6	180	0.61	2	1.1	180	180	1.5	1.9	1.3	15	12	4.6	3.5	0	180	12
17	3.5	0.84	10	4	0.75	2.8	0.66	0.97	2.9	e.	21	1.3	0.77	1.2	0.41	4.6	0	3.9	2.7	2.6
16	8.8	180	180	2.5	1.1	0.94	180	1.3	180	180	2.3	3.9	1.4	1.6	7.1	0	5.3	1.3	180	180
15	12	3.7	1.6	1.6	0.34	0.82	2.4	ഹ	180	9	4.6	6.5	3.3	0.96	0	6	0.87	8.4	2.2	2.2
14	180	2.8	2.7	180	0.93	0.48	0.8	0.71	4.1	4.2	3.8	1.9	0.31	0	2.7	3.5	1.8	3.3	4.7	12
13	2.9	0.43	0.6	3.3	0.6	4	0.96	1.1	2.3	180	3.3		0	2.6		1.7	0.78	1.5	180	5.1
12	3.2	0.35	1.8	2.9	180	6.2	5.8	9.6	1.3	180	1.4	0	0.79	2.8	5.5	5.5	3.1	1.2	1.4	1.6
11	0.39	1.1	180	2.3	180	5.1	2.5	2.6	6	1.7	0	1.3	2-	2.9	7.2	5.7	<i>.</i>	1.7	0.89	1.5
10	2.1	180	180	180	180	6.8	9	180	2.6	0	1.8	6.4	180	3.2	4.3	180	3.2	180	1.4	2.3
9	180	9	က	3.5	3.8	9.1	6.1	180	0	1.9	7	1.4	14	180	11	180	9.7	180	1.2	0.65
∞	7.3	6.3	3.1	2.5	3.2	2.4	4.6	0	180	180	2.6	2.5	4.1	5.6	3.1	4.1	5.1	1.5	180	180
7	2.9	1.5	1.2	2.4	1.4	2	0	2.5	2.8	9	1.5	6.1	0.96	1.3	2	0.96	2.4	1.3	2	2.7
9	6.1	8.4	7.7	2.5	13	0	1.7	1.2	180	6.8	2.5	9.1	180	1.6	0.94	1.2	4.7	1.8	66	6
Ŋ	6.9	3.3	1.4	1.3	0	12	1.2	3.2	2.8	180	180	17	e.	1.1	0.41	24	2.5	180	2.6	2.3
4	180	2.9	1.4	0	1.4	4.5	3.5	2.3	11	180	2.3	0.87	3.5	2	1.5	c,	2.4	6.3	2.9	9.9
က	35	1.9	0	2.6	0.76	180	1.2		2.1	4.9	2.2	0.89	0.56	2.4	2.3	2.3	0.87	2.3	2.3	4.6
2	2	0	0.97	2.4	5.1	7.3	180	3.4	4.5	4	2.9	0.37	0.66	180	3.5	2	1.1	1.1	1.9	2.1
1	0	2.7	2.6	180	6.9	6.9	180	180	7.6	2.2	0.48	1.8	4.7	7.6	2.3	2.6	1.2	1.5	1.1	1.9
3ildNr.		5	8	4	5	9	2	x	6	10	11	12	13	14	15	16	17	18	19	20

Tabelle B.15: Ergebnisse der Rotationsberechnung mit Hilfe des RANSAC- und 7-Punkte-Algorithmus aus der experimentellen Analyse Kapitel 8.4. Die Korrespondenzen wurden aus SURF-Merkmalen berechnet. Die Angaben beschreiben den Winkelfehler zwischen den berechneten Daten und den Referenzdaten. Die verwendete Einheit ist Grad.

20	87	140	110	45	100	27	100	110	140	160	25	120	160	90	10	150	47	130	75	0
19	68	66	110	87	84	120	100	180	170	110	110	150	110	72	86	180	110	180	0	71
18	120	170	50	120	180	82	140	29	180	180	90	22	37	130	170	78	140	0	180	130
17	79	66	43	59	80	13	89	21	120	83	9.2	96	140	130	82	120	0	79	110	77
16	130	180	180	32	160	140	180	100	180	180	160	170	36	130	29	0	100	58	180	180
15	76	100	100	140	160	160	18	11	180	73	160	29	31	170	0	41	110	68	80	47
14	180	150	45	180	170	130	80	51	130	120	33	110	19	0	82	36	120	120	140	170
13	84	100	150	51	67	62	120	62	56	180	150	9.5	0	19	79	150	42	44	180	160
12	140	150	140	66	180	13	16	110	170	180	110	0	62	69	54	55	110	140	14	120
11	170	66	180	64	180	120	120	74	55	27	0	110	75	110	120	130	38	92	100	65
10	100	180	180	180	180	110	94	180	10	0	150	150	180	56	120	180	80	180	120	150
6	180	120	150	120	130	120	110	180	0	11	120	2.4	140	180	110	180	11	180	170	140
8	150	160	120	130	44	15	00	0	180	180	100	110	85	17	8.9	27	110	17	180	180
7	160	10	87	24	110	140	0	98	63	100	46	130	97	130	63	160	170	34	76	96
9	110	160	160	12	59	0	80	16	180	77	52	170	180	24	5.6	130	170	120	120	75
5	75	41	71	14	0	86	160	140	110	180	180	19	26	170	170	59	33	180	100	100
4	180	3.3	74	0	160	96	16	43	130	180	120	42	55	160	35	150	53	61	95	73
3	38	170	0	170	110	180	85	56	120	170	120	93	150	140	100	140	92	140	72	120
2	2.6	0	5.1	150	3.5	160	180	170	170	170	63	150	75	180	94	87	100	160	80	110
1	0	10	2.2	180	66	7.7	180	180	53	94	160	97	89	130	65	11	71	66	68	48
BildNr.	1	2	3	4	ы	9	7	×	6	10	11	12	13	14	15	16	17	18	19	20

Tabelle B.16: Ergebnisse der Translationsberechnung mit Hilfe des RANSAC- und 7-Punkte-Algorithmus aus der experimentellen Analyse Kapitel 8.4. Die Korrespondenzen wurden aus SURF-Merkmalen berechnet. Die Angaben beschreiben den Winkelfehler zwischen den berechneten Daten und den Referenzdaten. Die verwendete Einheit ist Grad.

20	6.9	4.5	180	5.1	1.8	9	180	4.8	0.58	2.2	1.4	1.9	3.7	6	0.64	0.5	2.6	3.7	1.2	0
19	1.1	1.5	2.3	3	3.2	39	1.9	180	1.3	3.9	0.76	6.5	2	2.6	2.9	180	2.5	180	0	0.95
18	1.1	1.7	2.8	7.7	180	1.3	1.9	1.2	180	180	6.7	1.2	1.2	7.8	6.3	1.7	3.5	0	180	58
17	3.1	1	Η	2	0.82	2.2	0.52	0.99	8.3	3	14	3.7	0.78	2.5	2.6	4.3	0	3.1	2.4	2.7
16	4.9	-1	1.7	4.5	1.1	0.49	0.68	1.4	180	180	6.6	4.3	3.2	2.9	5.2	0	180	1.8	3.1	10
15	180	3.6	2.4	1.7	0.43	0.85		5.7	5.9	4.9	2.7	8.3	2.6	0.55	0	5.3	0.78	6.3	3.3	1.6
14	12	12	4	1.7	1.1	0.93	1.2	2.8	3.5	2	180	2.7	0.39	0	0.78	2.1	180	6.8	3.5	180
13	3.7	1.6	0.62	1.8	0.57	3.2	4.1	0.79	180	180	4	2.6	0	0.43	2.4	2	0.7	4.4	2	3.5
12	2.4	0.35	3.2	3.8	180	4.7	4.7	6	1.4	180	2.8	0	1.4	2.8	180	4.2	x	2	180	1.5
11	0.65	1.4	2.7	2.3	180	3.9	3.8	1.9	8.9	2	0	1.9	6.3	2.7	180	5.9	3.8	4.7	0.87	1.6
10	2.1	6.4	8.3	12	6.2	6.6	9	180	2.4	0	1.7	180	180	4	4.9	180	3.4	180	0.55	1.1
6	7.6	180	6.6	180	180	180	180	180	0	0.76	2.1	3.1	1.9	3.8	180	180	5.9	180	1.2	0.64
x	6.5	180	2.3	7.1	25	2.9		0	180	180	1.8	4.9	0.44	1.9	2.3	1.5	0.81	0.99	180	180
2	180	0.42	3.8	2.5	1.5	2	0	6.7	6.1	6.3	180	180	1.3	1.4		0.83	2.4	2	1.9	2.9
9	6.1	6.4	4.8	2.2	9.3	0	3.4	1.4	180	6.6	2.1	5.9	3.2	0.96	0.78	0.84	6.4	1.8	150	6
ю	180	180	2	1.3	0	x	1.5	180	3.6	3	180	1.4	0.61	0.95	0.34	1.1	0.42	180	2.9	1.8
4	180	4.2	180	0	1.6	2.2	2.8	2.2	15	5.1	2.4	15	4	2.2	1.7	2.5	2.6	7.7	3.2	7.7
°	8.1	2.4	0	7.6	16	3.6	2	2.3	6.1	5.6	6	0.95	0.7	180	0.68	2.3	0.84	6.3	2.2	10
2	1.9	0	0.69	28	n	9.2	3.1	3.2	180	2.3	2.5	0.31	0.89	2.1	5.3	4	3.4	1.5	1.8	9
1	0	ų	5.4	180	180	180	5.2	4.3	7.7	2.1	180	1.7	3.4	3.6	24	1.9	3.2	0.86	1.1	2.1
BildNr.	1	2	3	4	5	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20

Tabelle B.17: Ergebnisse der Rotationsberechnung mit Hilfe des RANSAC- und 8-Punkte-Algorithmus aus der experimentellen Analyse Kapitel 8.4. Die Korrespondenzen wurden aus SURF-Merkmalen berechnet. Die Angaben beschreiben den Winkelfehler zwischen den berechneten Daten und den Referenzdaten. Die verwendete Einheit ist Grad.

20	41	140	180	23	67	77	180	130	140	150	91	80	170	25	25	12	98	51	84	0
19	110	92	110	82	100	63	100	180	170	110	80	110	50	65	72	180	110	180	0	110
18	110	160	160	120	180	69	140	15	180	180	60	140	46	110	80	74	18	0	180	140
17	100	76	81	64	84	50	120	150	160	96	34	130	140	85	150	73	0	14	110	97
16	170	20	23	75	21	150	170	110	180	180	170	89	120	39	27	0	180	71	130	160
15	180	82	100	33	160	20	110	13	120	120	46	18	31	170	0	14	110	100	110	66
14	130	26	65	58	170	52	53	21	53	86	180	44	1.1	0	6.7	49	180	22	52	180
13	89	86	160	86	110	83	20	36	180	180	150	130	0	0.71	130	41	43	9.1	130	170
12	29	150	130	53	180	90	20	8.1	∞	180	4.9	0	130	69	180	110	26	26	180	59
11	120	91	120	60	180	12	120	100	59	31	0	68	75	26	180	130	110	86	100	86
10	100	170	170	170	75	110	86	180	29	0	150	180	180	100	120	180	83	180	110	170
6	46	180	150	180	180	180	180	180	0	87	57	160	140	130	180	180	160	180	170	140
8	140	180	140	120	130	2.2	29	0	180	180	110	120	50	32	56	110	16	150	180	180
2	180	∞	46	140	110	57	0	67	130	98	180	180	84	130	110	8.5	130	160	76	98
9	110	160	160	6.1	97	0	110	7.6	180	78	62	91	83	130	11	140	33	120	90	75
5	180	180	8.7	20	0	100	110	180	88	98	180	96	110	170	160	20	17	180	22	69
4	180	4.6	180	0	8.5	6.9	38	46	150	94	120	15	69	170	150	32	120	60	96	65
3	5.7	170	0	12	110	150	150	130	150	170	150	80	150	180	96	37	93	110	73	170
2	2.8	0	1.5	83	16	170	28	170	180	160	97	140	75	27	25	87	110	160	80	170
-1	0	140	130	180	180	180	120	29	52	88	180	100	94	78	20	38	110	110	68	42
BildNr.	1	2	3	4	പ	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20

 Tabelle B.18: Ergebnisse der Translationsberechnung mit Hilfe des RANSAC- und 8-Punkte-Algorithmus aus der experimentellen Analyse
 Kapitel 8.4. Die Korrespondenzen wurden aus SURF-Merkmalen berechnet. Die Angaben beschreiben den Winkelfehler zwischen den berechneten Daten und den Referenzdaten. Die verwendete Einheit ist Grad.

SIFT-Merkmale	u.E.	F_{max}	Fø	F_{Median}	F_{CEP95}	F_{σ}
RANSAC						
- 7-Punkte-Algorithmus	90	130	3.85	2.1	8	11.55
		170	70.92	66	160	54.02
- 8-Punkte-Algorithmus	108	25	2.87	2	8.1	2.68
		170	75.34	73	170	55.60
LMedS						
- 7-Punkte-Algorithmus	88	61	3.25	2	7.2	5.22
		170	82.97	82	170	52.97
- 8-Punkte-Algorithmus	100	140	4.16	2.1	8.9	12.65
		170	75.72	74	160	54.54
SURF-Merkmale	u.E.	F_{max}	Fø	F_{Median}	F_{CEP95}	F_{σ}
SURF-Merkmale RANSAC	u.E.	F _{max}	Fø	F_{Median}	F_{CEP95}	F_{σ}
SURF-Merkmale RANSAC - 7-Punkte-Algorithmus	u.E.	F _{max}	<i>F</i> ø	F_{Median} 2.4	<i>F_{CEP95}</i>	F_{σ} 4.79
SURF-Merkmale RANSAC - 7-Punkte-Algorithmus	u.E.	<i>F_{max}</i> 66 170	F_{\emptyset} 3.53 87.64	<i>F_{Median}</i> 2.4 92	$\begin{array}{c} F_{CEP95} \\ 10 \\ 170 \end{array}$	
SURF-Merkmale RANSAC - 7-Punkte-Algorithmus - 8-Punkte-Algorithmus	u.E. 104 114	$\begin{array}{c} F_{max} \\ 66 \\ 170 \\ 150 \end{array}$	F_{\emptyset} 3.53 87.64 4.09	<i>F_{Median}</i> 2.4 92 2.4	F_{CEP95} 10 170 9	F_{σ} 4.79 50.99 9.40
SURF-Merkmale RANSAC - 7-Punkte-Algorithmus - 8-Punkte-Algorithmus	u.E. 104 114	F_{max} 66 170 150 170	F_{\emptyset} 3.53 87.64 4.09 83.57	$\begin{array}{c} F_{Median} \\ \hline 2.4 \\ 92 \\ \hline 2.4 \\ 86 \end{array}$	F_{CEP95} 10 170 9 170	F_{σ} 4.79 50.99 9.40 51.55
SURF-Merkmale RANSAC - 7-Punkte-Algorithmus - 8-Punkte-Algorithmus LMedS	u.E. 104 114	F_{max} 66 170 150 170	$ F_{\emptyset} 3.53 87.64 4.09 83.57 $	<i>F_{Median}</i> 2.4 92 2.4 86	F_{CEP95} 10 170 9 170	F_{σ} 4.79 50.99 9.40 51.55
SURF-Merkmale RANSAC - 7-Punkte-Algorithmus - 8-Punkte-Algorithmus LMedS - 7-Punkte-Algorithmus	u.E. 104 114 128	F_{max} 66 170 150 170 50	$ F_{\emptyset} 3.53 87.64 4.09 83.57 3.61 $	F_{Median} 2.4 92 2.4 86 2.2	F_{CEP95} 10 170 9 170 9.2	F_{σ} 4.79 50.99 9.40 51.55 5.09
SURF-MerkmaleRANSAC- 7-Punkte-Algorithmus- 8-Punkte-AlgorithmusLMedS- 7-Punkte-Algorithmus	u.E. 104 114 128	F_{max} 66 170 150 170 50 170	$ F_{\emptyset} 3.53 87.64 4.09 83.57 3.61 86.54 $	F_{Median} 2.4 92 2.4 86 2.2 92	$ \begin{array}{r} F_{CEP95} \\ 10 \\ 170 \\ 9 \\ 170 \\ 9.2 \\ 160 \\ \end{array} $	F_{σ} 4.79 50.99 9.40 51.55 5.09 48.03
SURF-Merkmale RANSAC - 7-Punkte-Algorithmus - 8-Punkte-Algorithmus LMedS - 7-Punkte-Algorithmus - 8-Punkte-Algorithmus	u.E. 104 114 128 110	$ F_{max} \\ $	$\begin{array}{c} F_{\varnothing} \\ 3.53 \\ 87.64 \\ 4.09 \\ 83.57 \\ \hline \\ 3.61 \\ 86.54 \\ \hline \\ 3.64 \end{array}$	$ \begin{array}{r} F_{Median} \\ 2.4 \\ 92 \\ 2.4 \\ 86 \\ \hline 2.2 \\ 92 \\ 2.6 \\ \end{array} $	$F_{CEP95} = 10 \\ 170 \\ 9 \\ 170 \\ 9.2 \\ 160 \\ 10 \\ 10$	$ F_{\sigma} 4.79 50.99 9.40 51.55 5.09 48.03 3.90 $

98 ANHANG B. ERGEBNISSE DER EXPERIMENTELLEN ANALYSE

Tabelle B.19: Statistische Auswertung des Experiments von Kapitel 8.4. In der oberen Tabelle sind die Ergebnisse mit SIFT-Merkmalsextraktion und in der unteren mit SURF-Merkmalsextraktion zu sehen. Betrachtet werden die Werte: ungültige Ergebnisse, maximaler Fehler F_{max} , Durchschnittsfehler F_{\emptyset} , Fehlermedian F_{Median} , CEP95 des Fehlers F_{CEP95} und die Streuung F_{σ} . In jeder Zeile steht oben der Wert für die Rotations- und unten der für die Translationsberechnung.

Abbildungsverzeichnis

3.1	Abbildung einer Lochbildkamera	10
3.2	Unterschied zwischen Bild- und Kamerakoordinaten system $\ .$.	10
4.1	Die Epipolargerade	16
4.2	4 Lösungen der Faktorisierung	22
5.1	Merkmalerkennung am Beispiel des Robo-Cup-Feld	32
5.2	Gaußscher- und Differtial-of-Gauß-Skalenraum	33
5.3	Extrempunkt im Skalenraum	34
5.4	SIFT-Deskriptor	36
5.5	Verhältnisdichteverteilung der geringsten Abstände	37
5.6	Approximation der Ableitung zweiten Grades der Gaußfunktion	38
6.1	Einteilung des Gesamtproblems	42
6.2	Einteilung der robusten Schätzung	43
6.3	Einteilung des Berechnungsproblems	44
A.1	Messreihe realer Bilddaten 1	74
A.2	Messreihe realer Bilddaten 2	75

Tabellenverzeichnis

8.1	Laufzeitanalyse des SIFT-Algorithmus	54
8.2	Laufzeitanalyse des SURF-Algorithmus	55
8.3	Direkter Vergleich von SIFT und SURF	56
8.4	Punkte und Translationen zur synthetischen Datenerzeugung .	57
8.5	Berechnungsfehler mit simulierter optimaler Kamera ohne Op-	
	timierung	59
8.6	Berechnungsfehler mit simulierter optimaler Kamera mit Op-	
	timierung	59
A.1	Position und Verdrehung der Kamera	76
B.1	Anzahl von detektierten Merkmalen mit dem SURF-Algorithmus	78
B.2	Anzahl von erkannten Merkmalen mit dem SIFT-Algorithmus	79
B.3	Ergebnisse der Rotationsbestimmung mit der Algorithmen-	
	kombination SIFT/LMedS/7-PA	80
B.4	Ergebnisse der Translationsbestimmung mit der Algorithmen-	
	kombination SIFT/LMedS/7-PA	81
B.5	Ergebnisse der Rotationsbestimmung mit der Algorithmen-	
	kombination SIFT/LMedS/8-PA	82
B.6	Ergebnisse der Translationsbestimmung mit der Algorithmen-	
	kombination SIFT/LMedS/8-PA	83
B.7	Ergebnisse der Rotationsbestimmung mit der Algorithmen-	
	kombination SIFT/RANSAC/7-PA	84
B.8	Ergebnisse der Translationsbestimmung mit der Algorithmen-	~ ~
	kombination SIFT/RANSAC/7-PA	85
B.9	Ergebnisse der Rotationsbestimmung mit der Algorithmen-	0.0
D 10	kombination SIFT/RANSAC/8-PA	86
B.10	Ergebnisse der Translationsbestimmung mit der Algorithmen-	~ ~
D 11	kombination SIFT/RANSAC/8-PA	87
B.11	Ergebnisse der Rotationsbestimmung mit der Algorithmen-	00
D 10	kombination SURF/LMedS/7-PA	88
B.12	Ergebnisse der Translationsbestimmung mit der Algorithmen-	00
D 19	Emphasize den Detetionshertingmung mit den Algerithmen	09
D.13	kombination SUBE /I ModS /8 PA	00
R 1/	Ergobnisso der Translationsbestimmung mit der Algerithmen	90
D.14	kombination SURF/LMedS/8-PA	Q1
		0 I

B.15 Ergebnisse der Rotationsbestimmung mit der Algorithmen-	
kombination SURF/RANSAC/7-PA	92
B.16 Ergebnisse der Translationsberechnung mit der Algorithmen-	
kombination SURF/RANSAC/7-PA	93
B.17 Ergebnisse der Rotationsbestimmung mit der Algorithmen-	
kombination SURF/RANSAC/8-PA	94
B.18 Ergebnisse der Translationsberechnung mit der Algorithmen-	
kombination SURF/RANSAC/8-PA	95
B.19 Statistische Auswertung des Experimentes	96