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Abstract—This paper analyzes the human-robot boundaries
chosen by team TRACLabs at the DRC Trials from the per-
spective of the human operator and presents ideas for future
improvements based on our experience at the Trials.

I. INTRODUCTION

The DARPA Robotics Challenge (DRC) [1] is designed to
promote the development of technologies for semi-autonomous
robots capable of service in disaster scenarios. The DRC
is composed of three parts: the Virtual Robotics Challenge
(VRC), DRC Trials, and DRC Finals. TRACLabs started as
a track B team (software-only, funded) during the VRC, and
has performed well enough to earn a physical robot [2] and
compete to the Finals [3], scheduled for June 2015.

Atlas robots, developed by Boston Dynamics (BDI), were
provided to several teams for use in the DRC. Atlas has
28 hydraulic actuators: six per leg, six per arm, three in
the back, and one in the neck. Every joint has torque and
position sensing. An inertial measurement unit (IMU) mounted
to its pelvis provides robot pose information. The Multisense-
SL head, developed by Carnegie Robotics, provides most of
the non-proprioceptive sensing. The head contains a 180◦

LIDAR on a continuously rotating spindle and a pair of color
cameras each with an 80◦ FOV. Because the head cannot turn
laterally, two side-facing “situational awareness” (SA) cameras
were added. The SA cameras have highly warped fish-eye
lenses with a 185◦ FOV to cover most of Atlas’ surroundings.
In addition to hardware, BDI also provided locomotion and
balancing behaviors for use on the Atlas robots.

Team TRACLabs is fairly small, with roughly four primary
developers. Thus, our approach to the DRC Trials was to
reduce development time by relying on the human operator
for high-level decisions, introducing autonomy on the robot
only where necessary. To that end, we chose to develop low-
level [4] autonomous behaviors (essentially tools to aid the
operator) rather than attempting to create high-level autonomy
capable of solving the competition completely. The following
sections analyze our placement of the robot-human boundary
in three areas relevant to the competition (perception, planning,
and control), in order of use by the operator.

II. PERCEPTION

When the operator is responsible for most analysis and
decision making, access to good perception data is one of
the most important aspects of the system. People typically
out-perform robots at interpreting noisy or heavily discretized
image data, when presented in human-intelligible form. There-
fore, the perception automation we used at the Trials consisted

mostly of basic camera image processing and spatial aggre-
gation of laser scans. The resulting point clouds and images
were discretized, compressed, and relayed to the operator for
analysis. We found that some of the sensors were more helpful
to high-level human autonomy than others.

The point cloud from the LIDAR was useful for both
step and manipulation planning, but did present some issues.
Scans are planar, and so require aggregation over time to
yield a coherent 3D world representation. Due to the constant
aggregation, unmodeled changes in the world (e.g., an object in
the environment moves or is moved) cause blurring in the point
cloud, making those areas difficult to interpret. This effect is
magnified by the LIDAR’s rotation around a fixed axis, which
results in dense readings near the center that get sparser further
away. The sensed region is large, but interpretation is more
difficult in the “laser peripheral vision”. These issues often
made it necessary to obtain a fresh point cloud, particularly
before a manipulation, and freeze it to prevent contamination.

The front-facing head cameras were useful for general
awareness, especially for detecting unsafe contact forces (e.g.,
pushing on a wall hard enough to shift the torso makes
the camera images visibly shift). However, they were nearly
useless for manipulation, with little overlap between their field
of vision and the kinematic workspace of the robot’s arms.

The angled SA cameras proved to be the most useful sensor
for correcting manipulation errors caused by joint sensing
errors and poor control, and were used heavily during the
competition. Despite being fish-eyed and difficult to interpret,
they were still the best choice, as the other cameras were often
unable to see the objects being manipulated.

Not being able to look at and manipulate objects at the
same time is a central issue with Atlas that greatly impairs an
operator’s ability to plan well. The most significant addition
that could be made to Atlas to improve shared autonomy is
the ability to directly gather perception data anywhere in the
robot’s configuration space. The addition of a neck yaw joint
(allowing Atlas to look side-to-side without turning its back)
would solve most of these problems, though extra sensors
on the legs and arms for additional data on stepping and
manipulation targets respectively would be helpful as well.

Beyond hardware modification, more perception autonomy
could be shifted to the robot side to aid the operator. Given a
sufficiently large database of 3D models, many objects could
be automatically recognized and highlighted for the operator to
speed up the manipulation process. Since the robot has access
to the dense point cloud, it may be able to find objects invisible
to the operator due to discretization and compression.



III. PLANNING

To plan effectively, the operator must have access to a
good set of tools. At the Trials, our operator primarily used
low-autonomy setpoint-based actions. The operator provided a
setpoint to be reached at a given time, and the robot decided
how to make it happen. The four tools we used most often
were walking, single-stepping, Cartesian-space manipulation,
and joint scripting.

The walking tool provides the ability to move the base of
the robot to a specified 2D pose. It employs a simple flat-
ground footstep planner to generate steps for the stepping
controller provided by BDI. This is useful for autonomously
traversing flat portions of the environment, as well as rough
alignment of the robot to manipulation targets.

The single-stepping tool allows the operator to specify
a single target step as a 6-DoF pose. This allows for more
precise movement of the robot and is used both for aligning
the kinematic workspace of Atlas’ upper body with objects to
be manipulated and crossing rough terrain.

The Cartesian-space manipulation tool moves end-effectors
to desired target poses using a subset of the joints in Atlas’
upper body, either following a straight line or an arc in
Cartesian space. This was the tool we used for all of the
manipulation we did during the Trials.

The joint scripting tool enables the operator to execute
joint-space scripts created at run-time, as well as predefined
scripts, to make planning faster and more consistent. Run-
time scripting was used in development, but not during the
competition. Some examples are an arm configuration that is
a good starting point for manipulation and a configuration in
which it is safe to turn off the robot.

Overall, this setup worked well but was fairly slow during
manipulation. Direct teleoperation of the end-effectors by a
human would have been significantly faster, but was not viable
during the Trials due to networking restrictions. Adding higher-
level planning to the robot side would allow us to operate
more efficiently under poor networking conditions, but may
still not be as fast or reliable as direct teleoperation. To perform
well under all bandwidth conditions, it is therefore best to use
a sliding autonomy system. Such a system would allow the
command hierarchy to be accessed at all levels (e.g., “solve
the task” vs. “turn that valve” vs. “move these joints here”)
and let the operator choose the appropriate level of autonomy
based on the current situation [5].

IV. CONTROL

All plans, whether they are created by a robot or a human,
are contingent on the ability to execute them successfully.
At the Trials, we primarily executed plans with low-level
joint position control performed by the robot, augmented with
sporadic “goal-space” human operator control.

The joint position control we used at the time of the
competition was very poor. Because we were using simple
PD controllers, there was often significant steady state error
due to gravity. The encoder measurements also often did not
accurately reflect the actual joint positions, further impairing
control. The combination of these effects created a situation

in which the robot never reached its setpoints, and we often
didn’t know where the end effector actually was with respect
to the world, unless we were able to see it in the point cloud
data or a camera.

The goal-space feedback control performed by the human
operator allowed us to overcome these low-level control issues.
Humans intuitively think of error in terms of high level goals,
which is why teleoperation is often more successful than
robot-planned solutions. For example, when turning a valve
manually, you are primarily concerned with how well the
valve is turning, rather than how far off your joints are from
where you thought they should be if you closed your eyes and
imagined turning the valve (i.e., the typical robotics approach).
In this case, the operator monitored the true error based on
perception and provided correctional feedback in the form of
new commands if the errors proved detrimental to the progress
of the task. Even slowed down by bandwidth restrictions,
this high-level feedback significantly ameliorated the low-level
control issues.

Though we have greatly improved our joint sensing and
position control since the Trials, we still frequently find the
operator’s intuitive goal-based error correction to be useful,
and direct teleoperation remains the fastest option for task
completion. Moving goal-based control to the robot side would
greatly enhance robot autonomy, but is beyond the current state
of the art.

V. CONCLUSION

Despite being a small team, we succeeded at the Trials
by developing low-level tools instead of high-level autonomy.
In general, we used the robot for things that can be modeled
perfectly, can be executed reliably, and must be done in real
time. We generally used the human operator for planning,
adapting to new situations, data analysis, and using intuition
to make corrections in goal-space. Good sensor placement can
greatly improve human perception and planning ability, and
should be taken into account when designing future robots.
To maximize flexibility with respect to changing bandwidth
conditions, a complete but hierarchical set of tools at various
autonomy levels should be provided that are accessible by the
human operator at any level. To that end, future development
will include object recognition and automated completion of
larger task components, ideally supported by robot-side goal-
space feedback control.
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