DRC Team ViGIR's Modular, Open-Source, ROS-based Software for Humanoid Robots

A. Stumpf¹ (Speaker), S. Kohlbrecher¹, A. Romay¹, P. Schillinger³ *, S. Maniatopoulos², F. Bacim⁴, D.A. Bowman⁴, O. von Stryk¹, D.C. Conner⁵

¹ SIM Group, Department of Computer Science, Technische Universität Darmstadt, Germany, www.sim.tu-darmstadt.de, <stumpf|kohlbrecher|romay|stryk>@sim.tu-darmstadt.de

² Verifiable Robotics Research Group, School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA, sm2296@cornell.edu

³ Robert Bosch GmbH, Corporate Research, Department for Cognitive Systems, Stuttgart, Germany, philipp.schillinger@de.bosch.com, * Presented work performed at Technische Universität Darmstadt

⁴ Center for Human-Computer Interaction, Virginia Tech, Blacksburg, VA, USA, <fbacim|dbowman>@vt.edu

⁵ Capable Humanitarian Robotics & Intelligent Systems Lab, Department of Physics, Computer Science and Engineering, Christopher Newport University, Newport News, VA 23606, USA, david.conner@cnu.edu

In this presentation, a ROS-based software system for humanoid robots is introduced. It provides newcomers as well as experienced researchers in humanoid robotics with a complete system consisting of open source ROS-based packages for locomotion, manipulation, perception and world modeling, behavior engine, and operator control station. These allow different operation modes from teleoperation to supervised fully autonomous remote operation of a humanoid robot considering bandwidth constraints. The different packages are self-contained and can be used either in combination with others or alone. They can also be extended and modified to meet a specific user’s interest. The scientific achievements underlying the different packages are described in [1][2][3][4][5][6][7].

The software system has been developed over the last three years by the multinational Team ViGIR (www.teamvigir.org) participating in the DARPA Robotics Challenge (DRC) as a Track B team using an ATLAS robot in VRC, DRC Trials and DRC Finals. Besides the scientific developments to meet the requirements of the DRC, a major focus was on the development of robot agnostic as well as flexible software for humanoid robots to enable reusability with different humanoid robots beyond the scope of the DRC. This approach has already been evaluated successfully with different types of robots, e.g. THOR-MANG (DRC Team Hector) and ESCHER (DRC Team VALOR).

Demos with THORMANG robot simulated in Gazebo are provided.

References

Online Resources
Tutorial: https://www.youtube.com/watch?v=6fS89HGPEf4
GitHub Team ViGIR: https://github.com/team-vigir
GitHub THOR-MANG: https://github.com/thor-mang